首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The upper part of the lithosphere has been actively involved in various exogenic and endogenic processes which have left their imprint on the gravity field on the Indian Peninsula and the Himalaya. Analysis of the gravity field over the Dharwar craton shows that the greenstone belts of this craton have been formed as a result of development of deep fractures in the earth's crust during Archaean times. Precambrian mountain ranges such as the Aravallies, Vindhyans, Satpura and Eastern Ghats are located peripheral to Archaean cratons. Most of these mountain belts are characterized by gravity highs suggesting that the underlying crust is of higher than normal density. These mountain ranges with the exception of the Eastern Ghats do not appear to be locally compensated. Regional compensation seems to prevail over all these areas. Eastern Ghats ranges are also underlain by a crust of higher than normal density relative to the Dharwar and Bastar cratons and exist with a sharp contact with the cratons in the West. Isostatic compensation in the Eastern Ghats appears to have been achieved by thickening of the underlying crust. The Himalaya has attained a fairly high degree of isostatic compensation.  相似文献   

2.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

3.
Aeromagnetic anomalies over Bastar craton and Pranhita-Godavari (P-G) basin in the south of central India could be attributed to NW-SE striking mafic intrusives in both the areas at variable depths. Such intrusions can be explained considering the collision of the Bastar and Dharwar cratons by the end of the Archaean and the development of tensile regimes that followed in the Paleoproterozoic, facilitating intrusions of mafic dykes into the continental crust. The P-G basin area, being a zone of crustal weakness along the contact of the Bastar and Dharwar cratons, also experienced extensional tectonics. The inferred remanent magnetization of these dykes dips upwards and it is such that the dykes are oriented towards the east of the magnetic north at the time of their formation compared to their present NW-SE strike. Assuming that there was no imprint of magnetization of a later date, it is concluded that the Indian plate was located in the southern hemisphere, either independently or as part of a supercontinent, for some span of time during Paleoproterozoic and was involved in complex path of movement and rotation subsequently. The paper presents a case study of the utility of aeromagnetic anomalies in qualitatively deducing the palaeopositions of the landmasses from the interpreted remanent magnetism of buried intrusive bodies.  相似文献   

4.
The Karimnagar Granulite Belt (KGB) and the Bhopalpatnam Granulite Belt (BGB) occur along both flanks of the Pranhita-Godavari (PG) rift basin. We present a state-of-the-art overview on the geochronological and tectonic aspects of these belts and surrounding geologic domains, and report new age data on zircon, monazite and uraninite recovered from granulite facies assemblages from KGB and BGB based on electron microprobe analyses (EPMA). Zircons from KGB charnockites show core ages of up to 3.1 Ga mantled by rims of 2.6 Ga. Zircons from BGB have 1.9 Ga cores mantled by 1.7 Ga rims. Zircons with core ages of 1.6 to 1.7 Ga in BGB rocks suggest new growth at this time. Monazites and uranitite from KGB show clear peaks with well-defined ages in the narrow range between 2.42±0.08 Ga and 2.47°0.03 Ga. Rims of monazite show mean age of 2.21±0.08 Ga. Monazites from BGB define sharp linear trend in PbO vs. ThO2* diagram delineating a clear isochron with age of 1.59±0.03 Ga. Age data from KGB and BGB presented in this report negate current models linking these terrains to "Godavari Granulite Belt" and considering them as single and contemporaneous entity. The mid-Archaean to early Palaeoproterozoic signature recognized from KGB is totally missing in BGB. On the other hand, KGB rocks do not record any evidence for major Mesoproterozoic thermal regime. The two granulite belts shouldering the PG rift basin have therefore evolved in different times under distinct P-T conditions and thermal regimes. Our results have important implications in evaluating models of supercontinent assemblies, particularly the older assemblies of Ur, Columbia and Rodinia. While tectonothermal events in KGB broadly match with those of East Dharwar, we propose that BGB represents a 1.6 Ga collisional mobile belt between the Bastar and the Dharwar cratons. The 1.6 Ga collisional mobile belt at the southern margin of the Bastar craton was superposed by rift activity along the PG basin at 1.5 Ga. This sequence of events goes against the existence of a 3.0 Ga old contiguous assembly of Ur but closely matches with the history of accretion and break-up of the Columbia. Further, parts of the PG basin located away from the influence of the Eastern Ghats Mobile Belt, neither recorded any Grenville ages (1.0 Ga) corresponding to the Rodinia accretion nor late Pan-African ages (ca. 550 Ma) relating to the Gondwana amalgamation, indicating that the region did not witness any of these younger tectonic events.  相似文献   

5.
《International Geology Review》2012,54(16):1992-2027
An Archaean continent ‘SIWA’, an acronym for South India–Western Australia, comprising the Bastar–Dharwar craton, the Yilgarn craton, the Napier Complex, and the Vestfold Hills has been identified from palaeomagnetic and spatio-temporal data. This assembly was dispersed in three phases with the development of the proto-Indian ocean. The first and second events ~2350 and ~2000 Ma were related to the separation of the Yilgarn craton and the Napier Complex, respectively, to form a proto-Indo-Antarctic ocean and the Cuddapah basin. The proto-ocean was closed ~1650 Ma by the collision of the Lambert Terrane of East Antarctica and the Bastar–Dharwar craton. This collision, associated with ultra-high temperature (UHT) granulite facies metamorphism, is identified in the southern domain of the Eastern Ghats and the Oygardens domain of East Antarctica. The third extensional event between 1500 and 1200 Ma was associated with the separation of the Vestfold Hills block and a second phase of opening of the proto-Indian ocean, and the development of a series of basins on the western side of the Eastern Ghats (the Chhatisgarh, Khariar, Ampani, Indravati, and Sabari basins). The closing of this ocean basin during the Eastern Ghats–Rayner orogeny at ~950 Ma was related to the amalgamation of India and East Antarctica to form the supercontinent Rodinia. During the Neoproterozoic, this part of Rodinia was involved in orogenic collapse/extension and deposition of the Sodruzhesvo Group. The Pan-African Prydz Bay orogeny at ~550 Ma caused the closing of the basin to form East Gondwanaland.  相似文献   

6.
《Gondwana Research》2006,9(4):589-595
The Central Indian continental crust is postulated to have formed around the Archean nuclei of the Bastar Craton (Radhakrishna, 1993). Around 3.5 Ga. Old, high-Al 2 O 3 trondhjemite gneisses have been reported from the southern part of the Bastar Craton (Sarkar et al., 1993). However, neither isotopic nor geochemical evidence exists in the literature for the presence of rocks older than ∼2.5 Ga from the northern part of the Bastar Craton (Sarkar et al., 1990). The absence of tonalite-trondhjemite-granodiorite (TTG) suites from the Amgaon Gneisses (Rao et al., 2000), were considered to indicate substantial geochemical differences between the Amgaon gneisses and the TTG basement gneisses of the Dharwar Craton (i.e., the peninsular gneisses). Accordingly the mode of the tectonomagmatic evolutionary patterns of the Bastar Craton was considered to be different, both in time in space from the bordering Dharwar and Bundelkhand Cratons, respectively. In this communication we report the presence of high-Al 2 O 3 trondhjemite from the Amgaon gneisses, along with calc-alkaline and peraluminous granites that are geochemically similar to the late granitoids (∼2.5 to 2.6 Ga old) of the Dharwar Craton, suggesting that the two cratons were nearest neighbours at least during the late Archean.  相似文献   

7.
The Central Indian continental crust is postulated to have formed around the Archean nuclei of the Bastar Craton (Radhakrishna, 1993). Around 3.5 Ga. Old, high-Al 2 O 3 trondhjemite gneisses have been reported from the southern part of the Bastar Craton (Sarkar et al., 1993). However, neither isotopic nor geochemical evidence exists in the literature for the presence of rocks older than 2.5 Ga from the northern part of the Bastar Craton (Sarkar et al., 1990). The absence of tonalite-trondhjemite-granodiorite (TTG) suites from the Amgaon Gneisses (Rao et al., 2000), were considered to indicate substantial geochemical differences between the Amgaon gneisses and the TTG basement gneisses of the Dharwar Craton (i.e., the peninsular gneisses). Accordingly the mode of the tectonomagmatic evolutionary patterns of the Bastar Craton was considered to be different, both in time in space from the bordering Dharwar and Bundelkhand Cratons, respectively. In this communication we report the presence of high-Al 2 O 3 trondhjemite from the Amgaon gneisses, along with calc-alkaline and peraluminous granites that are geochemically similar to the late granitoids (2.5 to 2.6 Ga old) of the Dharwar Craton, suggesting that the two cratons were nearest neighbours at least during the late Archean.  相似文献   

8.
Southern Indian shield represents a mosaic comprised of several smaller structural domains separated by discrete shear zones. Here we present a horizontal Bouguer gravity gradient map of the Indian shield, south of 14 °N, to define a continental mosaic of gravity trends domains akin to structural domains. The gravity gradient image is based on 7862 newly collected observations merged with 6359 old gravity data. This combined dataset delineates structural boundaries of the five gravity domains related to the Eastern Dharwar Craton, the Eastern Ghats Mobile Belt, the extended Eastern Ghats Mobile Belt, the Southern Granulite Terrain, and the Western Dharwar Craton. Other belts of significant gravity gradients are found associated with the Eastern and the Western coasts. The loci of Closepet granite and Kolar schist belts do not manifest themselves as boundary zones between two distinct gravity domains of the Eastern Dharwar Craton. Lack of a gravity gradient across Karur–Oddanchatram–Kodaikanal and Karur–Kambam–Painavu–Trichur Shear Zones may be attributed to a lack of gravity measurements caused by difficulties in collecting data in topographically difficult terrain. The subdued gravity gradient across the Palghat–Cauvery Shear Zone and a weak gradient across the Achankovil Shear Zone indicates a lithological and/or morphological boundary rather than a terrane boundary. Alternatively, structural domains encompassing Palghat–Cauvery and Achankovil Shear Zones may have been in a neighbouring position during the Gondwana assembly, when Pan-African thermal perturbation reactivated the structures and reworked partly or totally obliterating earlier crustal fabric.  相似文献   

9.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic lndravati Basin a::e presented. The kimberlite has been subjected to extensive and pervasive low-temperature alteration. Spinel is the only primary phase identifiable, while olivine macrocrysts and juvenile lapilli are largely pseudomorphed (talc-serpentine- carbonate alteration). However, with the exception of the alkalies, major element oxides display systematic fractionation trends; likewise, HFSE patterns are well correlated and allow petrogenetic interpretation. Various crustal contamination indices such as (SiO2 + AI::O3 ~ Na20)](MgO ~ K20) and Si] Mg are close to those of uncontaminated kimberlites. Similar La]Yb ('79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur (73-145) and Narayanpet (72-156), Eastern Dharwar craton, southern India implies a similarity in their genesis. In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group 1I kimberlites from southern Africa and central India as well as to 'transitional kimberlites' from the Eastern Dharwar craton, southern India, and those from the Prieska and Kuruman provinces of southern Africa. There is a striking ~;imilarity in the depleted-mantle (TOM) Nd model ages of the Tokapal kimberlite system, Bastar craton, th~ kimberlites from NKF and WKE Eastern Dharwar craton, and the Majhgawan diatreme, Bundelkhand craton, with the emplacement age of some of the lamproites from within and around the Palaeo~Mesoproterozoic Cuddapah basin, southern India. These similar ages imply a major tectonomagmatic event, possibly related to the break- up of the supercontinent of Columbia, at 1.3-1.5 Ga across the l:hree cratons. The 'transitional' geochemical features displayed by many of the Mesoproterozoic po~:assic-ultrapotassic rocks, across these Indian cratons are inferred to be memories of the metasomatisi  相似文献   

10.
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.  相似文献   

11.
印度克拉通位于喜马拉雅山前断裂以南,与欧亚大陆相连,是一独立的地质构造单元,主要由Aravalli微陆块、Bundelkhand微陆块、Singhbhum微陆块、Bastar微陆块、东Dharwar微陆块、西Dharwar微陆块及南部麻粒岩微陆块7个太古宙微陆块与Satpura活动带、东Ghats活动带2个元古宙活动带组成。在前期项目的基础上,通过梳理印度克拉通各个构造单元的地质特征,笔者认为:印度克拉通基底在2.50 Ga左右趋于稳定;其主要由TTG片麻岩、花岗岩及不同变质程度的变质岩系组成;元古宙发育的Vindhyan盆地、Chhattisgarh盆地、Cuddapah盆地、Godavari盆地、Indravati盆地及Bhima-Kaladgi盆地浅海相碎屑岩-碳酸盐岩沉积是组成印度克拉通前寒武纪的盖层。  相似文献   

12.
The Trivandrum Granulite Block (TGB), southern India records evidence for three distinct stages of evolution (M1–;M3) during the Pan-African high grade metamorphism, with possible temperature gradient from north to south of the terrain as detected from mineral phase equilibria thermobarometry in three classic localities, namely Nuliyam, Kunnanpara and Nellikkala. The charnockites, both incipient and massive, were formed during the first stage (M1) at temperatures higher than their host rocks, and at appreciably lower pressures. Charnockite formation was dominantly controlled by an increase in partial pressure of CO2, along structural locales during subisothermal decompression, although an increase of potash activity could have also been an important factor in this process. The charnockites at Nellikkala in the northern margin of TGB were formed under appreciably more H2O-rich conditions (XH2O = 0.53±0.03) than those at Nuliyam (XH2O = 0.25±0.02) in the southern margin. It is inferred that during the period between the metamorphic stages M1 and M2, the terrain experienced subisobaric cooling. Comparison of results from thermobarometry with data on absolute age determinations from geochronology of the metamorphic rocks in TGB allows the interpretation that the M1 metamorphic event took place during 540–;600 Ma, M2 at about 530 Ma and M3 in the interval of 440–;470 Ma. Mineralogic and thermobarometric evidence for earlier high-grade metamorphic processes, if any, have been erased from these rocks. The processes of charnockite formation and post-peak retrograde metamorphism in the TGB took place under high geothermal gradients (40–;150°/km). This probably testifies to the existence of a local heat source, either magmas at depth or mantle (plume) beneath the region. The general metamorphic cycle in the TGB is estimated to be ca. 100–;160 Ma, which is much shorter in time span than that in the other regions of southern Peninsular India such as the Karnataka Craton and the Eastern Ghats Mobile Belt. During this period, the terrain experienced rapid exhumation of approximately 6–;7 cm/year, with the total amplitude of vertical movements estimated to be about 16–;17 km.  相似文献   

13.
Charnockitic magmatism in southern India   总被引:2,自引:0,他引:2  
Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba-Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba-Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba-Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher {ie565-01} favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.  相似文献   

14.
Structural mapping of the Pasupugallu pluton, an elliptical intrusive gabbro-anorthosite body, emplaced into the western contact zone between the Eastern Ghats Mobile Belt and the Archaean East Dharwar Craton, along the east coast of India, reveals concentric, helicoidal and inward dipping magmatic and/or tectonic foliations. We identify a <1 km-wide structural aureole characterized by pronounced deflection of regional structures into margin parallel direction, mylonitic foliations with S-C fabrics, sigmoidal clasts, moderately plunging stretching lineations, non-cylindrical intrafolial folds, and stretched elliptical mafic enclaves in the aureole rocks. Our results suggest that the pluton emplacement is syn-tectonic with respect to the regional ductile deformation associated with the terrane boundary shear zone at the western margin of the Eastern Ghats. We present a tectonic model for the emplacement of the pluton invoking shear-related ductile deformation, rotation and a minor component of lateral expansion of magma. The intrusive activity (1450-800 Ma) along the western margin of the Eastern Ghats can be correlated with the significant event of recurring mafic, alkaline and granitic magmatism throughout the global Grenvillian orogens associated with the continent-continent collision tectonics possibly related to the amalgamation and the breakup of the supercontinent Rodinia.  相似文献   

15.
Gravity data are used together with surface structural geology to examine the configuration and nature of an Archaean plate boundary between the Limpopo and Kaapvaal structural provinces in southern Africa. The boundaries where they are exposed are outlined by distinct sets of gravity profiles that can be considered as the gravity signature of the boundary.The crustal block boundaries inferred from gravity anomalies correspond in position to the crustal block boundaries inferred from geology and, approximately, to the position of block boundaries inferred from changes in the gravity trend pattern.It is suggested here that the boundary originated from crustal structures formed in response to fundamental processes operating during Precambrian episodes of cratonic convergence, collision and suturing. Given the deep level of terrain, the suture is cryptic in the sense that no clear surface indications of a suture have yet been recognized.A type crustal model has been derived from the type anomaly. The model indicates that the Limpopo block is consistently thicker and slightly denser than the older Kaapvaal crustal block. The density discontinuity of the type model penetrates the whole crust and separates cratons of different density, thickness, age and internal structure.  相似文献   

16.
A newly recognized remnant of a Paleoproterozoic Large Igneous Province has been identified in the southern Bastar craton and nearby Cuddapah basin from the adjacent Dharwar craton, India. High precision U–Pb dates of 1891.1 ± 0.9 Ma (baddeleyite) and 1883.0 ± 1.4 Ma (baddeleyite and zircon) for two SE-trending mafic dykes from the BD2 dyke swarm, southern Bastar craton, and 1885.4 ± 3.1 Ma (baddeleyite) for a mafic sill from the Cuddapah basin, indicate the existence of 1891–1883 Ma mafic magmatism that spans an area of at least 90,000 km2 in the south Indian shield.This record of 1.9 Ga mafic/ultramafic magmatism associated with concomitant intracontinental rifting and basin development preserved along much of the south-eastern margin of the south Indian shield is a widespread geologic phenomenon on Earth. Similar periods of intraplate mafic/ultramafic magmatism occur along the margin of the Superior craton in North America (1.88 Ga Molson large igneous province) and in southern Africa along the northern margin of the Kaapvaal craton (1.88–1.87 Ga dolerite sills intruding the Waterberg Group). Existing paleomagnetic data for the Molson and Waterberg 1.88 Ga large igneous provinces indicate that the Superior and Kalahari cratons were at similar paleolatitudes at 1.88 Ga but a paleocontinental reconstruction at this time involving these cratons is impeded by the lack of a robust geological pin such as a Limpopo-like 2.0 Ga deformation zone in the Superior Province. The widespread occurrence of 1.88 Ga intraplate and plate margin mafic magmatism and basin development in numerous Archean cratons worldwide likely reflects a period of global-scale mantle upwelling or enhanced mantle plume activity at this time.  相似文献   

17.
A map of Moho depth for the Black Sea and its immediate surroundings has been inferred from 3-D gravity modelling, and crustal structure has been clarified. Beneath the basin centre, the thickness of the crystalline layer is similar to that of the oceanic crust. In the Western and Eastern Black Sea basins, the Moho shallows to 19 and 22 km, respectively. Below the Tuapse Trough (northeastern margin, adjacent to the Caucasus orogen), the base of the crust is at 28 km, whereas in the Sorokin Trough, it is as deep as 34 km. The base of the crust lies at 29 and 33 km depths respectively below the southern and northern parts of the Mid-Black Sea Ridge. For the Shatsky Ridge (between the Tuapse Trough and the Eastern Black Sea Basin), the Moho plunges from the northwest (33 km) to the southeast (40 km). The Arkhangelsky Ridge (south of the Eastern Black Sea Basin) is characterised by a Moho depth of 32 km. The crust beneath these ridges is of continental type.  相似文献   

18.
Total field magnetic data were collected over the Krishna-Godavari basin covering 20, 000 sq.km with an average spacing of 8.5 km. This was mainly to study the long wavelength features related with the deep structures. Aeromagnetic map of the region compared well with the ground maps. The anomaly maps show a combination of NE-SW, NS/NNE-SSW and NW-SE trends. The anomalies of ground data are transformed to isolate the sources at different depths. The second vertical derivative and downward continuation maps bring out clearly the NE-SW and NS/NNE-SSW trends related to the coastal basin and Eastern Ghats implying that they are shallow. These are probably superposed on much deeper NW-SE trending structural features of Pre-Gondwana breakup as evidenced in the Horizontal Gradient of Pseudogravity and upward continuation maps. From the offshore magnetic data it appears that these trends extend up to the Ocean Continent Boundary. It is inferred that the deeper features are associated with rifting of Dharwar and Bastar cratons within the Indian plate, prior to the rifting of India from Gondwanaland. The superposed horst and graben structures are related to the formation of the pull-apart Krishna-Godavari basin as a result of rifting and drifting of India from Gondwanaland. These two structural features are associated with two different tectonic events.  相似文献   

19.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   

20.
An assemblage of predominantly metasedimentary rocks in the Eastern Ghats Province, India, underwent granulite facies metamorphism and deformation in early Neoproterozoic times, and was subsequently intruded by the Koraput alkaline complex. The intrusion was earlier believed to be syn- to late tectonic. The gabbroic core of the complex hosts nepheline-bearing syenitic dykes and veins. Following emplacement, magmatic amphibole within the syenites, and early orthopyroxene in feldspathic gneisses within the country rocks were retrogressed to biotite during pervasive solid-state deformation. Subsequent prograde metamorphism resulted in the formation of anhydrous assemblages at the expense of relict magmatic amphibole within the syenites, and metamorphic biotite in both the complex and the country rocks. Reactions reconstructed from textural observations indicate breakdown of biotite and amphibole to garnet + clinopyroxene ± orthopyroxene-bearing assemblages. Schreinemakers’ analysis on the relevant mineral associations suggests that heating was followed by loading of the region. This indicates thermal rejuvenation of the complex and the host granulites during an intracrustal orogeny that post-dates emplacement and cooling of the pluton. Available ages suggest that this event occurred in the mid-Neoproterozoic, and is probably unrelated to the amalgamation of the granulite belt with the Archaean Bastar/Dharwar craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号