首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We combine Lyman-break colour selection with ultradeep (≳200 ks) Chandra X-ray imaging over a survey area of ∼0.35 deg2 to select high-redshift active galactic nuclei (AGN). Applying careful corrections for both the optical and X-ray selection functions, the data allow us to make the most accurate determination to date of the faint end of the X-ray luminosity function (XLF) at   z ∼ 3  . Our methodology recovers a number density of X-ray sources at this redshift which is at least as high as previous surveys, demonstrating that it is an effective way of selecting high z AGN. Comparing to results at   z = 1  , we find no evidence that the faint slope of the XLF flattens at high z , but we do find significant (factor ∼3.6) negative evolution of the space density of low luminosity AGN. Combining with bright end data from very wide surveys we also see marginal evidence for continued positive evolution of the characteristic break luminosity   L *  . Our data therefore support models of luminosity-dependent density evolution between   z = 1  and   z = 3  . A sharp upturn in the the XLF is seen at the very lowest luminosities  ( L X≲ 1042.5 erg s−1)  , most likely due to the contribution of pure X-ray starburst galaxies at very faint fluxes.  相似文献   

2.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

3.
We describe some of the first X-ray detections of groups of galaxies at high redshifts  ( z ∼0.4)  , based on the UK deep X-ray survey of McHardy et al. Combined with other deep ROSAT X-ray surveys with nearly complete optical identifications, we investigate the X-ray evolution of these systems. We find no evidence for evolution of the X-ray luminosity function up to   z =0.5  at the low luminosities of groups of galaxies and poor clusters  ( L X≳1042.5 erg s-1)  , although the small sample size precludes very accurate measurements. This result confirms and extends to lower luminosities current results based on surveys at brighter X-ray fluxes. The evolution of the X-ray luminosity function of these low-luminosity systems is more sensitive to the thermal history of the intragroup medium (IGM) than to cosmological parameters. Energy injection into the IGM (from, for example, supernovae or active galactic nuclei winds) is required to explain the X-ray properties of nearby groups. The observed lack of evolution suggests that the energy injection occurred at redshifts   z >0.5  .  相似文献   

4.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

5.
The X-ray properties of a sample of 11 high-redshift  (0.6 < z < 1.0)  clusters observed with Chandra and/or XMM–Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the   L – T , M – T , M g– T   and M – L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L – T relation is consistent with the high- z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material.
The slope of the L – T relation at high redshift  ( B = 3.32 ± 0.37)  is consistent with the local relation, and significantly steeper than the self-similar prediction of   B = 2  . This suggests that the same non-gravitational processes are responsible for steepening the local and high- z relations, possibly occurring universally at   z ≳ 1  or in the early stages of the cluster formation, prior to their observation.
The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is  β= 0.66 ± 0.05  , the mean gas mass fractions within   R 2500( z )  and   R 200( z )  are  0.069 ± 0.012  and  0.11 ± 0.02  , respectively, and the mean metallicity of the sample is  0.28 ± 0.11 Z  .  相似文献   

6.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

7.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

8.
We use recent observations of high-redshift galaxies to study the evolution of galactic discs over the redshift range 0 <  z ≲1. The data are inconsistent with models in which discs were already assembled at z  = 1 and have evolved only in luminosity since that time. Assuming that disc properties change with redshift as powers of 1 +   z and analysing the observations assuming an Einstein–de Sitter universe, we find that for given rotation speed, disc scalelength decreases with z as ∼ (1 +  z )−1, total B -band mass-to-light ratio decreases with z as ∼ (1 +  z )−1, and disc luminosity (again in B ) depends only weakly on z . These scalings are consistent with current data on the evolution of disc galaxy abundance as a function of size and luminosity. Both the scalings and the abundance evolution are close to the predictions of hierarchical models for galaxy formation. If different cosmogonies are compared, the observed evolution in disc size and disc abundance favours a flat low-Ω0 universe over an Einstein–de Sitter universe.  相似文献   

9.
We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Δ z =0.4 we measured the angular correlation function w ( θ ) as a function of redshift up to z ∼4.8. From these measurements we derive the trend of the correlation length r 0. We find that r 0( z ) is roughly constant with look-back time up to z ≃2, and then increases to higher values at z ≳2.4. We estimate the values of r 0, assuming ξ ( r , z )=[ r r 0( z )]− γ , γ =1.8 and various geometries. For Ω0=1 we find r 0( z =3)≃7.00±4.87  h −1 Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.  相似文献   

10.
We analyse near-infrared Hubble Space Telescope ( HST )/Near-Infrared Camera and Multi-Object Spectrometer F 110 W ( J ) and F 160 W ( H ) band photometry of a sample of 27 i '-drop candidate   z ≃ 6  galaxies in the central region of the HST /Advanced Camera for Surveys Ultra Deep Field . The infrared colours of the 20 objects not affected by near neighbours are consistent with a high-redshift interpretation. This suggests that the low-redshift contamination of this i '-drop sample is smaller than that observed at brighter magnitudes, where values of 10–40 per cent have been reported. The J – H colours are consistent with a slope flat in   fν ( fλ ∝λ−2)  , as would be expected for an unreddened starburst. However, there is evidence for a marginally bluer spectral slope  ( fλ ∝λ−2.2)  , which is perhaps indicative of an extremely young starburst (∼10 Myr old) or a top heavy initial mass function and little dust. The low levels of contamination, median photometric redshift of   z ∼ 6.0  and blue spectral slope, inferred using the near-infrared data, support the validity of the assumptions in our earlier work in estimating the star formation rates, and that the majority of the i -drop candidates galaxies lie at   z ∼ 6  .  相似文献   

11.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

12.
The z  = 2.286  IRAS galaxy F10214 + 4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214 + 4724, with clear evidence for three distinct components: lines of width ∼ 1000 km s−1 from a Seyfert 2 nucleus; ≲ 200 km s−1 lines which are likely to be associated with star formation; and a broad (∼ 4000 km s−1) C  III ] 1909-Å emission line which is blueshifted by ∼ 1000 km s−1 with respect to the Seyfert 2 lines. Our study of the Seyfert 2 component leads to several new results. (i) From the double-peaked structure in the Lyα line, and the lack of Lyβ, we argue that the Lyα photons have emerged through a neutral column of N H ∼ 2.5 × 1025 m−2, possibly located within the AGN narrow-line region, as proposed for several high-redshift radio galaxies. (ii) The resonant O  VI 1032, 1036-Å doublet (previously identified as Lyβ) is in an optically thick (1:1) ratio. At face value this implies an extreme density ( n e ∼ 1017 m−3) more typical of broad-line region clouds. However, we attribute this instead to the damping wings of Lyβ from the resonant absorption. (iii) A tentative detection of He  II 1086 suggests little extinction in the rest frame ultraviolet.  相似文献   

13.
We present measurements of the angular correlation function of galaxies selected from a B J ∼23.5 multicolour survey of two 5°×5° fields located at high galactic latitudes. The galaxy catalogue of ∼4×105 galaxies is comparable in size to catalogues used to determine the galaxy correlation function at low redshift. Measurements of the z ∼0.4 correlation function at large angular scales show no evidence for a break from a power law, although our results are not inconsistent with a break at ≳15 h−1 Mpc. Despite the large fields-of-view, there are large discrepancies between the measurements of the correlation function in each field, possibly caused by dwarf galaxies within z ∼0.11 clusters near the South Galactic Pole.
Colour selection is used to study the clustering of galaxies from z ∼0 to z ∼0.4. The galaxy correlation function is found to depend strongly on colour, with red galaxies more strongly clustered than blue galaxies by a factor of ≳5 at small scales. The slope of the correlation function is also found to vary with colour, with γ∼1.8 for red galaxies and γ∼1.5 for blue galaxies. The clustering of red galaxies is consistently strong over the entire magnitude range studied, although there are large variations between the two fields. The clustering of blue galaxies is extremely weak over the observed magnitude range, with clustering consistent with r 0∼2 h−1 Mpc. This is weaker than the clustering of late-type galaxies in the local Universe, and suggests that galaxy clustering is more strongly correlated with colour than morphology. This may also be the first detection of a substantial low-redshift galaxy population with clustering properties similar to faint blue galaxies.  相似文献   

14.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

15.
We compute the redshift space power spectrum of two X-ray cluster samples: the X-ray Brightest Abell Cluster Sample (XBACS) and the Brightest Cluster Sample (BCS) using the method developed by Feldman, Kaiser & Peacock. The power spectra derived for these samples are in agreement with determinations of other optical and X-ray cluster samples. For XBACS we find the largest power spectrum amplitude expected, given the high richness of this sample ( R ≥2) . In the range 0.05< k <0.4  h  Mpc−1 the power spectrum shows a power-law behaviour P ( k )∝ k n with an index n ≃−1.2 . In a similar range, 0.04< k <0.3  h  Mpc−1 , the BCS power spectrum has a smaller amplitude with index n ≃−1.0 . We do not find significant evidence for a peak at k ≃0.05  h  Mpc−1 , suggesting that claims such of feature detections in some cluster samples could rely on artificial inhomogeneities of the data. We compare our results with power spectrum predictions derived by Moscardini et al. within current cosmological models (LCDM and OCDM). For XBACS we find that both models underestimate the amplitude of the power spectrum but for BCS there is reasonably good agreement at k ≳0.03  h  Mpc−1 for both models.  相似文献   

16.
BeppoSAX observations of the high-redshift ( z =4.72) blazar GB 1428+4217 confirm the presence of a complex soft X-ray spectrum first seen with the ROSAT PSPC. Flattening below a rest-frame energy of 5 keV can be accounted for by absorption from an equivalent column density of (cold) gas with N H∼8×1022 cm−2 . Below 2 keV a (variable) excess of a factor of ∼20 above the extrapolated absorbed spectrum is also detected. These findings are consistent with and extend to higher redshifts the correlation between increasing soft X-ray flattening and increasing z , previously pointed out for large samples of radio-loud quasars. We propose that such features, including X-ray absorption and soft excess emission as well as absorption in the optical spectra, can be satisfactorily accounted for by the presence of a highly ionized nuclear absorber with column N H∼1023 cm−2 , with properties possibly related to the conditions in the nuclear regions of the host galaxy. High-energy X-ray emission consistent with the extrapolation of the medium-energy spectrum is detected up to ∼300 keV (rest frame).  相似文献   

17.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   

18.
We examine the effects of cooling flows on the T X– L Bol relation for a sample of the most X-ray luminous ( L Bol > 1045 erg s−1) clusters of galaxies known. Using high-quality ASCA X-ray spectra and ROSAT images we explicitly account for the effects of cooling flows on the X-ray properties of the clusters and show that this reduces the previously noted dispersion in the T X– L Bol relationship. More importantly, the slope of the relationship is flattened from L Bol ∝  T 3X to approximately L Bol ∝  T 2X, in agreement with recent theoretical models which include the effects of shocks and pre-heating on the X-ray gas. We find no evidence for evolution in the T X– L Bol relation within z  ∼ 0.3. Our results demonstrate that the effects of cooling flows must be accounted for before cosmological parameters can be determined from X-ray observations of clusters. The results presented here should provide a reliable basis for modelling the T X– L Bol relation at high X-ray luminosities.  相似文献   

19.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

20.
We carry out a comprehensive joint analysis of high-quality HST /ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated indicating a relaxed cluster. Assuming hydrostatic equilibrium we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray measurements. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by ∼30 per cent at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray luminous small-scale structure can bias observed temperature measurements downward at about the same (∼30 per cent) level. We determine the gas entropy at  0.1 r vir  (where r vir is the virial radius) to be ∼800 keV cm2, as expected for a high-temperature cluster, but its profile at  >0.1 r vir  has a power-law form with index ∼0.8, considerably shallower than the ∼1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy 'floor' exists at all, then it is within a small region in the inner core,   r < 0.02 r vir  , in accord with previous theoretical studies of massive clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号