首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
广西花山-姑婆山燕山期花岗岩的地球化学特征及成因研究   总被引:11,自引:0,他引:11  
广西花山-姑婆山燕山期花岗岩体以高硅、高钾、富碱、低磷、准铝质为特征,具有较高的TFeO/MgO值,富集大离子亲石元素、高场强元素和稀土元素,普遍出现褐帘石,应归属于富钾的钙碱性花岗岩(KCG)系列岩石,相当于高钾钙碱性I型花岗岩。产生于后造山陆内挤压向拉张转换的地球动力学背景下,其形成与岩石圈伸展-减薄、亏损地幔岩浆的上涌和富含金云母-钾质碱镁闪石的岩石圈地幔的部分熔融有关。  相似文献   

2.
李艳芳  邱检生  王睿强  徐航  洪宇飞 《地质学报》2019,93(12):3020-3046
本文选取冈底斯带东段加查县东北部丝波绒曲复式岩体为对象,对其进行了岩相学、地质年代学、岩石地球化学以及Sr-Nd-Hf同位素组成的综合研究,据此探讨了该复式岩体的成因及其对构造演化的启示。研究结果表明,该复式岩体由早侏罗世辉长岩-花岗岩杂岩(188~185Ma)和始新世花岗质岩石(~47Ma)构成,两期花岗质岩石中普遍发育塑变形态的镁铁质包体。早侏罗世杂岩由角闪辉长岩和英云闪长岩组成,角闪辉长岩中的主要铁镁矿物为角闪石,它们为一套钙碱性弧岩浆岩组合,具有亏损的Sr-Nd-Hf同位素组成。始新世花岗质岩石主要为二长花岗岩-花岗闪长岩,它们较早侏罗世英云闪长岩更为富碱,属钙碱性-高钾钙碱性I型花岗岩,其同位素组成也较早侏罗世英云闪长岩富集。综合分析表明,该区早侏罗世复合辉长岩-花岗岩的形成受控于新特提斯洋板片北向俯冲的构造背景,角闪辉长岩起源于受俯冲板片脱水交代的上覆地幔楔的部分熔融,共生的英云闪长岩则为同期幔源岩浆底侵诱发初生地壳部分熔融产生的长英质岩浆与幔源岩浆不同程度混合的产物。始新世花岗岩的形成受控于新特提斯洋板片断离的构造背景,是由具"弧"型地球化学特征的初生地壳再造的产物,并有少量印度陆壳富集组分参与成岩。  相似文献   

3.
佛冈花岗杂岩体是南岭地区最大的晚中生代岩基,乌石闪长岩角闪辉长岩是佛冈钙碱性系列花岗岩中最基性的端员。乌石闪长岩角闪辉长岩和周围佛冈黑云母花岗岩、含角闪石花岗闪长岩同属于高钾钙碱性系列岩石。本文系统地总结并对比了多种角闪石压力计和角闪石斜长石温度计,针对中酸性钙碱性岩浆,提出了改进的角闪石Al_Ti温压曲线格子,并将其运用到乌石闪长岩角闪辉长岩的结晶条件估算中。估算结果显示,乌石闪长岩角闪辉长岩中角闪石结晶温度为82 0±2 0℃,压力为70~130MPa,XH2 O为0 .7±0 .1,其结晶条件代表岩体侵位时的物理环境。花岗闪长岩中的角闪石结晶温度约为82 0℃,压力约为2 6 0MPa ,是在较深的岩浆房中结晶的。  相似文献   

4.
北京早侏罗世大石坡–黑山坨复式岩体出露于华北克拉通东部燕山造山带西段,由大石坡角闪黑云正长岩和黑山坨花岗岩组成。正长岩为富Mg钾质中性岩,微量元素具有富集Rb、Ba、Sr、Pb、LREE等大离子亲石元素,相对亏损高场强元素Nb、Ta、U、Th、Zr、Hf以及P、Ti的特征,εNd(t)为-12.1~-12.2,ISr值为0.70506~0.70464;而花岗岩属于弱过铝质Mg质高K钙碱性岩石系列,具有LREE富集、HREE亏损,富集Rb、Ba、Th、U、Pb等大离子亲石元素和放射性元素,亏损高场强元素Nb、Ta、Zr、Hf以及Sr、P、Ti的特征,εNd(t)为-15.5~-18.0,ISr值为0.70516~0.70593。大石坡正长岩岩浆起源于富集地幔,是幔源K质基性岩浆在高压下分离结晶的产物。幔源岩浆底侵加热并交代下地壳,促使其部分熔融产生花岗质岩浆,侵位于尚未固结的正长岩,形成黑山坨花岗岩,二者组成同心环状复式岩体。大石坡角闪黑云正长岩的岩石学和地球化学特征暗示水的弱化作用在华北地块内部岩石圈地幔破坏过程中扮演了重要角色。幔源岩浆与地壳岩石之间能量和化学成分双扩散作用所导致的部分熔融是形成华北克拉通内部中生代高钾钙碱性长英质岩浆活动的一种重要成岩机制。  相似文献   

5.
辽西杨家杖子地区位于华北板块北缘,燕山褶皱带东段。该区侵入岩主要有4种类型:中粗粒钾长花岗岩、斑状钾长花岗岩、似斑状钾长花岗岩和细粒角闪二长岩。其中:主体岩石为中粗粒钾长花岗岩、斑状钾长花岗岩和似斑状钾长花岗岩,均呈较大的岩基出露,沿北东向展布,锆石U-Pb同位素测年结果显示其形成于早侏罗世(181~188 Ma);细粒角闪二长岩多呈岩墙或岩脉产出,近南北向展布,锆石U-Pb同位素测年结果显示其形成于晚三叠世(227 Ma左右)。岩石地球化学分析结果显示:斑状钾长花岗岩和似斑状钾长花岗岩属于弱过铝质高钾钙碱性系列岩石;细粒角闪二长岩属于准铝质高钾钙碱性系列岩石。斑状钾长花岗岩和似斑状钾长花岗岩富集高场强元素Th、La、Nd、Hf和Gd,亏损高场强元素Ti、Ho和大离子亲石元素Ba、Sr;细粒角闪二长岩富集高场强元素Gd、Er和大离子亲石元素Ba、Sr,亏损高场强元素Nb、Hf、Ti、Pr、Y、Yb。稀土配分模式图均为右倾型,轻稀土元素分馏明显,重稀土元素分馏不明显。研究表明该区中生代岩浆作用主要发生在早侏罗世,且与著名的杨家杖子钼矿有着密切的成因联系,而晚三叠世岩浆作用相对较弱。  相似文献   

6.
华北克拉通东部辽东地区出露古元古代侵入岩,为准确认识辽东地区古元古代构造演化过程,选取北沟岩体、正岔岩体和树柳林子岩体的岩相学、岩石地球化学及年代学特征,探讨了岩体的形成时代、岩石成因及其构造环境。锆石SHRIMP U-Pb年代学研究表明,柳林子岩体年龄为(2 490±8) Ma,北沟岩体年龄为(2 457±11) Ma。北沟岩体高硅富钾,富集Rb、U、Th、K等大离子亲石元素,亏损Nb、Ti、P等高场强元素,为过铝质高钾钙碱性I型花岗岩,Nb/Ta平均值5. 75,Rb/Nb平均值4. 21,源于太古宙古老地壳的部分熔融;正岔岩体高硅富钾,富集Rb、Ba、U、Th、K等大离子亲石元素,亏损Nb、Ti、P等高场强元素,为弱过铝质高钾钙碱性A型花岗岩,Nb/Ta平均值16. 06,Rb/Nb平均值4. 81,源区可能由幔源岩浆底侵带来的热量加热地壳,导致其重熔并与之混合后形成的。柳林子岩体为变质角闪辉长岩,呈亚碱性,富集Rb、Ba、K等大离子亲石元素,亏损Nb、Ti、P等高场强元素,显示其岩浆可能形成于受陆壳微弱混染的软流圈地幔或岩石圈地幔。认为研究区古元古代侵入岩形成于东、西陆块碰撞拼合后的后造山挤压向板内伸展转换的构造环境,为构造体质转换的产物。  相似文献   

7.
巴音勿拉山岩体位于华北克拉通北部,白乃庙岛弧岩带南部,锆石LA-ICP-MS U-Pb定年结果及锆石特征表明其侵位时代为(410.9±1.2)Ma。岩体岩石组合为一套正长岩杂岩,富钾富碱,铝质量分数较高,属偏铝质岩石。地球化学特征表明岩浆源区为岩石圈地幔,岩浆演化过程中下地壳的同化作用显著。其形成与白乃庙岛弧岩带与华北克拉通碰撞后的伸展作用有关。  相似文献   

8.
辽宁义县地区太古宙变质深成岩   总被引:1,自引:0,他引:1  
地球化学特征研究表明,义县地区太古宙变质深成岩属于太古宙晚期富钾的正常钙碱性的花岗闪长岩-石英二长岩-花岗岩系列的岩石,属于壳源分异型花岗岩,形成环境为构造活动带。  相似文献   

9.
华北克拉通北缘中段主要由变质的太古宙单塔子杂岩、古元古代红旗营子杂岩、未变质的大庙-长哨营等辉长岩-斜长岩-偏碱性花岗岩和晚古生代变质铁镁质到花岗质岩石组成。约2.49Ga的单塔子杂岩包括麻粒岩相到角闪岩相变质的闪长质-奥长花岗质-花岗闪长质-二长花岗质片麻岩,岩石化学特征表明它们属于中钾—高钾钙碱性演化系列,大部分岩石Mg#在40以下,右斜式从无Eu异常到明显的正Eu异常的稀土配分模式,具有明显的Th、Nd、Ta和Ti的负异常,εNd(t)= 0.65~-0.03,亏损地幔模式年龄tDM=2.78~2.71Ga。岩石成因研究表明,它们形成于初生岩浆和再循环地壳的铁镁质岩石部分熔融的岩浆混合,形成于大陆边缘弧的构造背景。形成于2.44~2.41Ga的红旗营子杂岩主要由变质铁镁质岩石-花岗闪长质-二长花岗质片麻岩组成,表现了与单塔子杂岩类似的岩石化学特征,即中钾—高钾钙碱性岩浆演化系列,其中变质铁镁质岩石表现为大离子亲石元素变化较大,Th、Nb、Ta、Zr负异常,P为正异常。其他的花岗质岩石样品Th、Nb、Ta、P和Ti负异常。所有岩石表现出右斜式无Eu异常的稀土配分模式。其中变质铁镁质岩石εNd(t)=-1....  相似文献   

10.
富闪深成岩是一类罕见的岩石类型,角闪石含量很高,矿物组合十分罕见,对岩浆作用和地球动力学过程具有敏感的指示意义。本文对甘肃北山地区首次发现的芦草沟二叠纪富闪深成岩开展野外调查、LA-ICP-MS锆石U-Pb测年、全岩主量和微量元素地球化学分析,结果表明,岩石的SiO2含量为45.43%~51.84%, Na2O含量为2.76%~3.98%, K2O含量为0.18%~0.59%, Al2O3含量为16.59%~20.58%, MgO含量为4.18%~6.34%,显示贫钾富钠的特征;岩石的微量元素组成显示富集大离子亲石元素Rb、Ba、U等,亏损高场强元素Nb、Ta、Zr和Hf,Eu异常不明显(δEu=0.81~1.46)。锆石U-Pb年龄为286.7±2.5 Ma,即形成于早二叠世。结合区域地质背景,认为芦草沟富闪深成岩是俯冲碰撞环境壳幔相互作用的产物,而中亚造山带大范围发育中晚二叠世花岗岩是碰撞后构造岩浆事件的产物,暗示北山地区的古亚洲洋在中二叠世才完全消亡,进入陆内演化阶段。  相似文献   

11.
The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain   总被引:1,自引:0,他引:1  
The Sanabria appinitic rocks and host migmatites form an unusual,non-peri-batholithic complex in which all the typical membersof the appinite suite are present. It differs from most appiniticcomplexes in the deeper level of emplacement and the close temporaland spatial association with migmatites. Consequently, manyin situ relationships that resulted from the invasion of maficmagma into a crustal anatectic zone are extremely well preserved.The complex shows unequivocal relations between members of theappinitic suite and between these and migmatites derived byanatexis of a gneissic formation (Ollo de Sapo gneiss). Theserelations point to derivation of monzodiorites and biotite dioritesby hydrous basalt fractionation combined with fluid-assistedmelting of the crustal rocks surrounding the appinitic intrusions.This hydrous basic magma may be derived from an enriched regionof the mantle associated with subduction. Petrogenetic modelshave been tested using a combination of field relations andgeochemical data. Despite the complexity of the processes involved,it is concluded that water played an important role in the petrogenesisof the intermediate and mafic magmas. Reaction between monzodioritemelts and the host migmatites was responsible for the generationof a range of intermediate rocks within the complex. The needfor water to facilitate magma generation in both the mantleand the crust suggests that melting is linked with subduction.This interpretation has important implications because appiniticmagmatism may be considered as indicative of subduction processesinvolved not only in the generation of the mafic end-membersof the suite, but also in the generation of batholiths withwhich the appinitic rocks are spatially and temporally associated. KEY WORDS: appinite; monzodiorite; migmatite; Variscan orogen; Iberian massif  相似文献   

12.
REE, Th, U, Pb and Hf have been determined in nine selected samples from the Marda Archaean calc-alkaline suite. Data are consistent with field relationships and major and other trace element abundances, which suggest a crustal origin for the Marda magmas. REE patterns are analogous to continental margin (Andean) calc-alkaline volcanic suites and are not similar to those from other Archaean areas.  相似文献   

13.
The debate about whether Eocene magmatism is considered to be post-collisional or subduction-related or not still continues. Here we offer new 40Ar-39Ar ad U-Pb zircon geochronology, mineral chemistry, bulk rock and Sr-Nd-Pb isotope geochemistry data obtained from the southern dike (SD) suite, in comparison with the northern dike (ND) suite, from the Eastern Pontides. The geochronological data indicate that the SD suite erupted between 45.89 and 45.10 Ma corresponding to the Lutetian (Middle Eocene). The magmas of the ND suite are characterised by slightly more alkaline affinity compared to the SD suite. The trace and rare earth element (REEs) content of the SD suite is characterised by large ion lithophile element (LILEs; Sr, K2O, Ba, Rb) enrichment and depletion of Nb, Ta, and TiO2 elements to different degree with high Th/Yb ratios, which indicate that the magmas forming the SD and ND suites were derived from lithospheric mantle sources enriched by mostly slab-derived fluids in the spinel stability field. The Sr, Nd and Pb radiogenic isotope ratios of the dikes support the view that the magma for the hydrous group (H-SD) was derived from a relatively more enriched mantle source than the other SD and ND suites. The ND suite and the anhydrous group (A-SD) display similar geochemical features characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios, while the H-SD group has respectively lower LREE/HREE ratios indicating higher melting degree. Detailed considerations of the alkalinity, enrichment and partial melting degree for the source of the studied volcanic rocks indicate that the magmas of the northern dike suite are characterised by slightly more alkaline affinity, whereas the magmas throughout the southern dike suite show increments in the enrichment rate and melting degree. In light of the obtained data and comparative interpretations, the geodynamic evolution and differences in petrogenetic character of the Lutetian magmas from both the northern and southern parts of the Eastern Pontides may be explained by different degrees of melting of a net veined mantle source initially metasomatized by mostly subduction fluids during asthenospheric upwelling due to fragmented asymmetric delamination in a post-collisional extensional tectonic environment.  相似文献   

14.
M. P. Atherton  A. A. Ghani 《Lithos》2002,62(3-4):65-85
None of the existing models for calc-alkaline “Late Granite” (Siluro–Devonian) genesis in the metamorphic Caledonian orogenic belt of Ireland and Scotland fully explains their spatial, age or chemical character. A consistent model must involve the closure of Iapetus Ocean, where slab breakoff is a natural consequence of attempted subduction of continental crust. Expected outcome is a long linear belt of high-K, calc-alkaline magmas, some with characteristic trace element signatures, specifically high Ba, Sr and Zr. Other features include the critical magmatic association of coeval appinite and granite, rapid uplift, erosion and the low-grade regional metamorphism in the Southern Uplands. The linear heat pulse on breakoff is spatially, intensity and time limited producing small volume melts emplaced as separated plutons, over a short time span. Magmatism in the Caledonian metamorphic belt is accurately accounted for by slab breakoff on collision of Baltica with the Scoto–Greenland margin during the Scandian orogeny, following Iapetus Ocean closure. The two chemically, isotopically and areally distinctive suites in the metamorphic belt in Scotland, viz. the Argyll and Cairngorm Suites, can be modelled by reference to the Donegal granites where sequential partial melting of new, lamprophyric underplated crust, then shallower old crust, as heat conduction moved up through the crust on slab breakoff, produced magmas characteristic of the two suites.  相似文献   

15.
The Archean granites exposed in the Mesorchean Rio Maria granite-greenstone terrane (RMGGT), southeastern Amazonian craton can be divided into three groups on the basis of petrographic and geochemical data. (1) Potassic leucogranites (Xinguara and Mata Surrão granites), composed dominantly of biotite monzogranites that have high SiO2, K2O, and Rb contents and show fractionated REE patterns with moderate to pronounced negative Eu anomalies. These granites share many features with the low-Ca granite group of the Yilgarn craton and CA2-type of Archean calc-alkaline granites. These granites result from the partial melting of rocks similar to the older TTG of the RMGGT. (2) Leucogranodiorite-granite group (Guarantã suite, Grotão granodiorite, and similar rocks), which is composed of Ba- and Sr-rich rocks which display fractionated REE patterns without significant Eu anomalies and show geochemical affinity with the high-Ca granite group or Transitional TTG of the Yilgarn craton and the CA1-type of Archean calc-alkaline granites. These rocks appear to have been originated from mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids or alternatively product of interaction between fluids enriched in K, Sr, and Ba, derived from a metasomatized mantle with older TTG rocks. (3) Amphibole-biotite monzogranites (Rancho de Deus granite) associated with sanukitoid suites. These granites were probably generated by fractional crystallization and differentiation of sanukitoid magmas enriched in Ba and Sr.The emplacement of the granites of the RMGGT occurred during the Mesoarchean (2.87–2.86 Ga). They are approximately coeval with the sanukitoid suites (∼2.87 Ga) and post-dated the main timing of TTG suites formation (2.98–2.92 Ga). The crust of Rio Maria was probably still quite warm at the time when the granite magmas were produced. In these conditions, the underplating in the lower crust of large volumes of sanukitoid magmas may have also contributed with heat inducing the partial melting of crustal protoliths and opening the possibility of complex interactions between different kinds of magmas.  相似文献   

16.
Calc-alkaline arc magmatism at convergent plate margins is volumetrically dominated by metaluminous andesites. Many studies highlighted the importance of differentiation via fractionation processes of arc magmas, but only in the last decades, it has been demonstrated that not all rock-forming minerals may affect the evolution of calc-alkaline suites. In particular, a major role exerted by Al-rich hornblende amphibole as fractionating mineral phase has been documented in many volcanic arc settings. The aim of this work is to understand the role of the Tschermak molecule (CaAlAlSiO6) hosted in the hornblende and plagioclase fractionation assemblage in driving magma differentiation in calc-alkaline magmatic suites. We explore this issue by applying replenishment–fractional crystallization (RFC) and rare earth element–Rayleigh fractional crystallization (REE-FC) modeling to the Sabzevar Eocene (ca. 45–47 Ma) calc-alkaline volcanism of NE Central Iran, where hornblende-controlled fractionation has been demonstrated. Major element mass balance modeling indicates RFC dominated by a fractionating assemblage made of Hbl52.0–52.5 + Pl44.1–44.2 + Ttn3.3–3.9 (phases are expressed on total crystallized assemblage). REE-FC modeling shows, instead, a lower degree of fractionation with respect to RFC models that is interpreted as due to hornblende and plagioclase resorption by the residual melt. Calculations demonstrate that fractionation of the Tschermak molecule can readily produce dacite and rhyolite magmas starting from a calc-alkaline andesite source (FC = ca. 30 %). In particular, the Tschermak molecule controls both the heavy rare earth elements (HREE) and light rare earth element (LREE) budgets in calc-alkaline differentiation trends.  相似文献   

17.
The Younger Granites of Yahmid-Um Adawi area, located in the southeastern part of Sinai Peninsula, comprise two coeval Late Neoproterozoic post-collisional alkaline (hypersolvous alkali-feldspar granites; 608–580?Ma) and calc-alkaline (transsolvous monzo- and syenogranites; 635–590?Ma) suites. The calc-alkaline suite granitoids are magnesian and peraluminous to metaluminous, whereas the alkaline ones are magnesian to ferroan alkaline to slightly metaluminous. Both granitoid suites exhibit many of the typical geochemical features of A-type granites such as enrichment in Nb (>20?ppm), Zr (>250?ppm), Zn (>100?ppm) and Ce (>100?ppm) and high 10000*Ga/Al2O3 ratios (>2.6) and Zr?+?Nb?+?Y?+?Ce (>350?ppm). Accessory mineral saturation thermometers demonstrated former crystallization of apatite at high temperatures prior to zircon and monazite separation from the magma for both granitoid suites. The mild zircon saturation temperatures of the studied Younger Granites (around 800?°C) imply low-temperature crustal fusion and incomplete melting of the largely refractory zircon. The two Younger Granite suites were semi-synchronously evolved during the post-collisional stage of the Arabian-Nubian Shield subsequent to the collision between the juvenile shield crust and the older pre-Neoproterozoic continental blocks of west Gondwana. Their parental magmas has been generated by melting of crustal source rocks with minor involvement from mantle, which might participated chiefly as a source of heat necessary for fusion of the crustal precursor. Extensive in-situ gamma-ray spectrometry revealed anomalously high radioactivity of some Younger Granite exposures along Wadi Um Adawi (eU; 388–746?ppm and eTh; 1857–2527?ppm) and pegmatitic pockets pertaining to the calc-alkaline suite (equivalent U and Th; 212–252?ppm and 750–1757?ppm, respectively). The radioactivity of the syngenetic pegmatites arises from the primary radioactive minerals uranothorite and thorite together with the U- and/or Th-bearing minerals zircon, columbite, samarskite and monazite. The anomalously high radioactivity of some Younger Granite exposures in Wadi Um Adawi stem from their appreciable enclosure of the epigenetic uranium minerals metatorbenite and uranophane.  相似文献   

18.
Summary Subvolcanic pyroxenite-hornblendite-kentallenite-diorite-granodiorite masses of the appinite suite that are spatially and temporally associated with the much more voluminous granitic plutons of the British Caledonides have major element proportions and REE patterns indicative of shoshonitic affinities. Hornblendite-monzonite-syenogabbro-pyroxene melasyenite-durbachite-biotite-rich syenite-biotite-rich granite masses of the plutonic durbachite suite of the Bohemian Massif of the Central European Hercynides, that also are spatially and temporally associated with much more voluminous granitic plutons, have geochemical characteristics that generally correspond with those of the appinite suite. Compositionally both suites resemble lamprophyres emplaced during the latter parts of the respective episodes.Both the appinite and durbachite suites show independence of K/Rb and SiO2 with the two suites having mainly different but somewhat overlapping K/Rb ratios. Other geochemical characters, as shown by fields and trends on K vs Rb, AFM and other plots, point to the durbachite suite representing generally more evolved products of shoshonitic magma than members of the appinite suite. However, there are different geochemical characteristics, including higher Cr/Ni ratios in the durbachite suite and Co present in lower proportions in the appinite suite. These differences are the result of different histories of freezing, remelting and partial separation and remixing of fractionation products and reflect the explosive subvolcanic vs plutonic regimes of the appinitic and durbachitic suites, respectively. Support for this petrogenesis is provided by mineral compositions and comparison of compositions of mineral phases and the rocks in which they occur.
Ein geochemischer Vergleich der subvulkanischen Appinite der Britischen Kaledoniden und der Durbachite der Mitteleuropäischen Herzyniden: Hinweise für assoziierten shoshonitischen und granitischen Magmatismus
Zusammenfassung Subvulkanische Pyroxenit-Hornblendit-Kentallenit-Diorit-Granodioritmassen der Appinit-Gruppe, die räumlich und zeitlich mit den viel umfangreicheren Granitplutonen der Britischen Kaledoniden assoziiert sind, haben Hauptelementverteilungen und SEE Gehalte, die auf Beziehungen zu Shoshoniten hinweisen. Hornblendit-Monzonit-Syenogabbro-Pyroxen-Melasyenit-Durbachit-Biotit-reiche Syenite-Biotit-reiche Granitmassen der plutonischen Durbachitabfolge des Böhmischen Massivs der Mitteleuropäischen Herzyniden, die auch räumlich und zeitlich mit viel umfangreicheren Granitplutonen assoziiert sind, haben geochemische Charakteristika, die im allgemeinen mit denen der Appinit-Gruppe übereinstimmen. Beide Gruppen sind in ihrer Zusammensetzung Lamprophyren ähnlich, die in späteren Abschnitten der magmatischen Episoden Platz genommen haben.Sowohl in den Appinit-, wie in den Durchbachit-Abfolgen sind K/Rb und SiO2 voneinander unabhängig, beide Gruppen haben aber verschiedene, wenn auch zum Teil einander überlappende K/Rb Verhältnisse. Andere geochemische Parameter, wie K vs Rb, AFM und andere, weisen darauf hin, daß die Durbachit-Abfolge im allgemeinen weiter entwickelte Produkte shoshonitischen Magmas darstellt, als die Mitglieder der Appinit-Gruppe. Es gibt jedoch verschiedene geochemische Charakteristika, wozu auch höhere Cr/Ni Verhältnisse in den Durbachiten und niedrige CoGehalte in den Appiniten gehren. Diese Unterschiede sind das Ergebnis verschiedener Abkhlung, Aufschmelzung und teilweiser Trennung- und Wiedermischung von Fraktionierungs-Produkten und weisen auf die explosiven subvulkanischen bzw. plutonischen Regimes der beiden Gruppen hin. Diese petrogenetische Interpretation wird durch Mineralzusammensetzungen und deren Vergleich mit den Muttergesteinen unterstützt.


With 6 Figures  相似文献   

19.
ABSTRACT

Appinite complexes preserve evidence of mantle processes that produce voluminous granitoid batholiths. These plutonic complexes range from ultramafic to felsic in composition, deep to shallow emplacement, and from Neo-Archean to Recent in age. Appinites are a textural family characterized by idiomorphic hornblende in all lithologies, and spectacular textures including coarse-grained mafic pegmatites, fine-grained ‘salt-and-pepper’ gabbros, as well as planar and linear fabrics. Magmas are bimodal (mafic-felsic) in composition; ultramafic rocks are cumulates, intermediate rocks are hybrids. Their geochemistry is profoundly influenced by a mantle wedge extensively metasomatized by fluids/magmas produced by subduction. Melting of spinel peridotite sub-continental lithospheric mantle (SCLM) produces appinites whose geochemistry is indistinguishable from coeval low-K calc-alkalic arc magmatism. Coeval felsic rocks within appinite complexes and adjacent granitoid batholiths are crustal magmas. When subduction terminates, asthenospheric upwelling (e.g. in a slab window, or in the aftermath of slab failure) induces melting of metasomatized garnet SCLM to produce K-rich sho shonitic magmas enriched in large ionic lithophile and light relative to heavy rare earth elements, whose asthenospheric component can be identified by Sm-Nd isotopic signatures. Coeval late-stage Ba-Sr granitoid magmas have a ‘slab failure’ geochemistry, resemble TTG and adakitic suites, and are formed either by fractionation of an enriched (shoshonitic) mafic magma, or high pressure melting of a meta-basaltic protolith either at the base of the crust or along the upper portion of the subducted slab. Appinite complexes may be the crustal representation of mafic magma that underplated the crust for the duration of arc magmatism. They were preferentially emplaced along fault zones around the periphery of the granitoid batholiths (where their ascent is not blocked by overlying felsic magma), and as enclaves within granitoid batholiths. When subduction ceases, appinite complexes with a more pronounced asthenospheric component are preferentially emplaced along active faults that bound the periphery of the batholiths.  相似文献   

20.
本文对藏南冈底斯带中段的花岗岩类和角闪辉长岩进行了锆石U-Pb年代学和全岩地球化学分析,据此阐明了岩体的形成机制与演化过程,并探讨了成岩时的大地构造背景。分析结果显示,研究区内花岗岩类和角闪辉长岩体的LA-ICPMS锆石U-Pb定年结果为41~55Ma,为始新世早-中期岩浆活动的产物,代表了区内岩体的成岩年龄。在地球化学组成上,花岗岩类属于钙碱性到高钾钙碱性系列,均富集轻稀土(LREE)和大离子亲石元素(LILE)(Rb、Ba和K),强烈亏损Nb、Ta、P等高场强元素(HFSE),具有弧型岩浆岩的地球化学组成。此外,花岗岩类的铝饱和指数(A/CNK)小于1.1,属于准铝质到弱过铝质的I型花岗岩。角闪辉长岩为石榴橄榄岩部分熔融的产物,并在后期侵位的过程中遭受到了壳源物质的混染。综合分析表明,研究区内的岩体形成于初始碰撞向主碰撞的转化阶段。始新世早期(~50Ma)新特提斯洋板片的断离引起软流圈物质上涌,导致岩石圈地幔发生部分熔融形成基性岩浆,随后基性岩浆底侵至下地壳并诱发下地壳发生部分熔融形成花岗岩质岩浆,最后经过岩浆混合作用形成始新世早-中期冈底斯地区的花岗岩类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号