首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper introduces the anomalies observed by digital tiltmeter, cross-fault deformation meter, 4-component borehole strainmeter and geothermometer before May 12, 2008, Ms8.0 Wenchuan earthquake, Sichuan. The digital tiltmeter installed in the epicentral region in Shifang County recorded the tilt anomalies 15 days before the earthquake with variation amplitude of 3.7 times larger than the annual deviation of 2007. The cross-fault deformation meter installed at Zimakua station on the Xianshuihe-Anninghe fault zone detected displacement anomaly occurring since 2006 with the variation amplitude exceeding the cumulative value of the last ten years. Five borehole strainmeter stations in the Chongqing section of Three Gorges Reservoir area observed unconventional strain changes occurring in the period from May 1 through 12, 2008. Among them, the strainmeter at Wanzhou station recorded the great compression strain rate on the EW component at 14:00 o'clock of May 10, and the anomaly amplitude was so large that the instrument output exceeded its dynamic range, corresponding to a level of ~104 nanostrains. The geothermometers installed in Xi'an, Chongqing and Xichang recorded the sudden temperature changes from November 2007 to January 2008 with the variation amplitudes several times larger than the ordinary deviation. The above phenomena and the criteria for distinguishing the anomalies from background fluctuations are discussed in this paper.  相似文献   

2.
Abstract: There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth’s free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5-6.0) can also cause Earth’s free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.  相似文献   

3.
Abstract: Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3–11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, i.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.  相似文献   

4.
There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5-6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.  相似文献   

5.
2010年1月24日,山西省河津市发生了MS 4.8级地震,在此之前,山西临汾地震台VP型宽频带倾斜仪2009年的观测数据清晰地记录到与实验室岩石破裂失稳过程类似的图像:4-7月观测数据以准线性变化为主;8月出现偏离线性的非线性变化;10月达到峰值点之后开始缓慢下降,此阶段即亚失稳阶段;12月出现加速下降;12月21日转平。转平之后35 d距离观测台站89 km处的河津市即发生了MS 4.8级地震。在准线性阶段(岩石破裂实验的应力积累阶段),发震断层及附近的Benioff应变曲线也出现同步加速现象。这表明临汾地震台VP型宽频带倾斜仪所记录的亚失稳态现象是来自震源的信息。实验室观测到的亚失稳现象可在野外观测数据中得以验证。  相似文献   

6.
汶川地震和科学钻探   总被引:36,自引:2,他引:34  
许志琴  李海兵  吴忠良 《地质学报》2008,82(12):1613-1622
2008年5月12日,在我国四川省发生了震撼世界的汶川特大地震,给人民的生命财产造成了巨大的损失。在汶川特大地震发生及其余震尚在继续的特殊时期,快速实施汶川地震断裂带的科学钻探(WFSD),是认识地震发生的机制、继续对余震进行有效监控以及提高地震监视和预警的能力的极佳机遇。2008年11月6日,汶川地震断裂带科学钻探工程开工典礼在四川省都江堰市虹口乡举行,标志着地震机制的研究跨上了新的台阶。通过对科学钻孔的直接取样,多学科观测和测试,揭示地震断裂带的深部组分、结构和构造属性,重塑地震断裂带的物理和化学过程,为提高未来地震的监测、预报或预警能力提供重要信息。  相似文献   

7.
云南地区水温异常与地震关系   总被引:1,自引:0,他引:1       下载免费PDF全文
张彬  方震  刘耀炜  杨选辉  赵刚  荆燕 《地球科学》2014,39(12):1880-1886
云南地区地震频发, 水温观测点分布也最集中, 为研究水温异常与地震的关系提供了便利条件.通过收集已经公开发表关于该区域"十五"之前的水温异常与地震的对应关系的文章, 较系统地研究了水温异常持续时间、异常空间位置与地震之间的关系.结果表明: 水温异常主要是地震短临异常, 强震前也存在水温中期趋势异常; 一般情况下, 地震震级越大, 异常范围越广, 发震地点通常出现在水温异常集中的区域.   相似文献   

8.
Abstract: A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of ~2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least ~10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif’s western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu-Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a ~7 km offset with ~5 km vertical component.  相似文献   

9.
汶川地震孕震背景与同震变化的铲形断层位错模拟   总被引:1,自引:0,他引:1  
张希  王庆良  唐红涛  贾鹏 《地球学报》2011,32(2):189-194
利用1983—1997、1997(或2007)—2008年跨龙门山断裂带长水准剖面观测资料,借助纯逆断、铲形断层正负位错模型与网格搜索试错法,模拟2008年5月12日四川省汶川县8.0级特大地震前闭锁背景与同震变化,在一定程度上反映出龙门山中央断裂震前应变能积累、震时反弹的特性。  相似文献   

10.
Abstract: On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending right-lateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.  相似文献   

11.
针对短临地震预报难尤其是临震预报难问题,以2008年汶川地震为背景,对受地震影响严重的川、滇、陕、甘、渝5个省市区域内的深层地下水位进行了分析,发现在龙门山断裂带所在的四川省及其NE方向的甘肃省区域,共有7口井水位表现为明显的临震异常,异常形态包括振荡型、脉冲型和阶升型。利用小波变换方法对振荡型及脉冲型异常进行分析,结果表明:临夏、古浪横梁和清水等井水位信号中存在着周期为2~8 min,振幅为5~59 mm的前驱波波形,这是由于震源体慢破裂过程中发出的地震波造成的。阶升型异常幅度较大,分别为129.4 cm和340.8 cm,从震前几分钟一直持续到震后,未恢复到震前状态;表明引起震时地下水剧烈变化的动力作用在震前已经开始,震时变化只是在此基础上进一步发展与加剧。  相似文献   

12.
使用NCEP数据分析新疆于田地震前异常增温   总被引:1,自引:0,他引:1  
美国国家环境预测中心(NCEP)全球再分析资料为监测地震异常提供了新的数据源。分析了2008年3月21日新疆7.3级地震前一个月的NCEP数据,发现2月18日06时(UTCS世界标准时间)在震中附近的断层带上出现温度异常,随后异常持续并向震中位置靠近。20日18时,异常区域完全覆盖震中位置,增温幅度达到7 K。21日12时异常结束。分析表明:温度异常区域与断层分布具有一致性,增温中心对应未来震中位置,增温幅度和发震震级可能存在对应关系,这对预测地震具有重要意义。  相似文献   

13.
2013年12月16日三峡库区巴东发生Ms5.1地震.根据eigen-6c2模型研究了巴东地区的8-638阶卫星重力异常, 结果表明: 该地区场源深度为10 km的地壳为局部重力低异常, 反映了该处物质密度较周围偏低, 形成低密度层.同时, 研究了该地区速度结构剖面, 结果表明: 巴东地区地壳5~9 km及10~15 km深处存在上下两个低速层, 上部低速层与水库渗水有关, 下部低速层与地幔热流体的上涌有关.低密度层和低速层的确定为韧性流变层的存在提供了证据.巴东地震是地壳深部能量的长期集聚与突发释放, 属构造地震.然而, 库水下渗引起的上部低速异常降低了断层活动的阈值, 震前库水载荷的变化对此次巴东地震的发生起到了触发作用.通过对比次声波和地震波, 我们得出次声波仪记录到的异常信号为本地次声波.   相似文献   

14.
This article is to review results from scientific drilling and fault-zone trapped waves(FZTWs) at the south Longman-Shan fault(LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan, China. Immediately after the mainshock, two Wenchuan Fault Scientific Drilling(WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault(YBF), the middle fault strand of the south LSF zone. Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m, respectively. The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge, breccia, cataclasite and fractures. Close to WFSD-1 site, the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake. A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks. Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths. The zone is several hundred meters wide along the principal slip, within which seismic velocities are reduced by ~30–55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth. The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes. We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake. We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock. Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault(AGF), two strands of the south LSF at shallow depth. A combination of seismic, petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics, and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.  相似文献   

15.
Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, I.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the post-earthquake phenomena.  相似文献   

16.
The 26 November 2005 Jiujiang-Ruichang, Jiangxi, Ms?5.7 earthquake occurred in a seismotectonic setting of moderate earthquake. The northwest-trending Xiangfan-Guangji fault (XFG) does not enter into the epicenter vicinity, but the northeast-trending Ruichang-Wuning fault (RWF) as a regional fault extends to the epicenter nearby, appearing as the Ruichang basin and its marginal faults. Tilting of the Ruichang Basin (RCB) in the Quaternary was controlled by the RCB southeast-marginal, buried fault (RSMBF). Shallow geophysical survey reveals that the RSMBF caused an offset of the reflection layers. Drill hole columnar section demonstrates that there are about 10–12?m displacement in the lower section of the middle-Pleistocene Series along the RSMBF, but no disruption is found in the upper section of the middle-Pleistocene Series. The RSMBF not only has activity in the Quaternary, but also coincides with the nodal plane I from the focal mechanism of the Jiujiang-Ruichang Ms?5.7 earthquake. This evidence, including aftershock distribution and isoseismic lines, strongly suggests that the RSMBF might be the seismogenic tectonics. The RWF is discontinuous at the surface, and consists of three en echelon Quaternary basins, which are the Ruichang, Fanzhen and Wuning basins. Three moderate earthquakes, the Fanzhen ML?4.9 earthquake, the Yejiapu ML?4.1 earthquake and the Jiujiang-Ruichang Ms?5.7 earthquake, have happened in the basins since 1995. The seismogenic tectonics of the Jiujiang-Ruichang Ms?5.7 earthquake is not isolated, but may be controlled by the RWF at depth, the slip of which causes the accumulation of energy for earthquake occurrence.  相似文献   

17.
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.  相似文献   

18.
Abstract: Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (~20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.  相似文献   

19.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

20.
20100124山西河津M4.8地震前,临汾地震台宽频倾斜仪记录到与实验室岩石破裂亚失稳过程类似图像,震源及附近地区也出现多项准同步性的短临异常。本文对这次地震前震源及附近地区多种地球物理场观测数据在发震断层黏滑失稳前不同阶段的变化特征进行了探讨。结果表明:1)震前记录到的亚失稳现象并非单点单测项,而是具有多点多物理场的群体性特征;2)这些异常出现的时间与临汾宽频倾斜仪记录的亚失稳事件时间基本同步,其形态上以大幅突变为主,时间上多集中在震前45 d左右,空间上主要集中在距震中100 km的范围内,且具有随时间从外围向震中区集中的特点;3)震前不仅在多种地球物理场观测数据中记录到类似亚失稳现象,而且在震前1~6 d一些地球物理场观测仪器还记录到与发震断层失稳前预滑有关的小事件;4)震前临汾宽频倾斜仪记录到的亚失稳现象、震源及附近地区出现多项准同步性的短临异常,是在震源及附近地区的区域应力场增强、介质特性发生改变的情况下出现的,可能与河津地震有关;5)震前多种地球物理场异常随时间推移显示出协同化的特点,即沿发震断裂方向有由外围向震中迁移和集中的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号