首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了更好地把握风廓线雷达的探测性能和数据精度,对移动风廓线雷达与L波段探空雷达资料进行对比统计分析,结果表明:移动风廓线雷达的有效数据获取率达到80%的高度为3500m,符合边界层风廓线雷达的有效探测高度。移动风廓线的径向速度平均差和标准差随着高度的增加而增加,东西方向的径向速度误差比南北方向的高约0.5—1.0m/s。风廓线雷达自身数据的准确性良好,但是降雨对数据的准确性影响比较大。这次对比试验结果表明,对比试验应该选择比较平稳的天气过程。由于秋冬季节大气环流比较稳定,降雨类型多为层状云降雨,因而风廓线雷达数据可靠性高;对流性降雨过程往往造成风廓线雷达资料可靠性降低。  相似文献   

2.
高原地区风廓线雷达资料评估   总被引:3,自引:0,他引:3  
董保举  张晔  徐安伦 《气象科技》2009,37(5):580-583
在简述风廓线雷达原理的基础上,将风廓线雷达探测资料与探空资料进行对比分析,发现风速风向一致性较好,温度一致性较差。对风廓线资料总的数据获取率及不同天气条件下的数据获取率进行了统计,大理风廓线雷达边界层高度的数据获取率大于80%,在对流层低层以及边界层的探测能力要远远大于高层,高空雨季后的探测高度大于雨季前的探测高度。不同天气条件下低空的数据获取率差别不大,高空阴雨天的数据获取率大于晴天的数据获取率,阴雨天的探测高度大于晴天的探测高度。  相似文献   

3.
风廓线雷达与L波段雷达探空测风对比分析   总被引:4,自引:0,他引:4  
吴蕾  陈洪滨  康雪 《气象科技》2014,42(2):225-230
为了解风廓线雷达探测的准确性,对北京南郊大气探测试验基地2006-2008年3年的观测资料与常规高空探测资料即L波段雷达探空测风数据进行了对比,计算并分析了不同高度、不同时次、不同风速条件下的对比结果,进行了相关性分析,计算了平均差和标准差。结果表明,二者测风结果有较好的一致性,半小时平均水平风u、v分量的标准差在2.3m/s左右,为风廓线雷达和L波段雷达探空共同的测量误差及不同采样空间和时间的水平风的差异。  相似文献   

4.
利用2016~2017年科尔沁边界层风廓线雷达每6min的风场资料评估雷达探测性能,主要针对风廓线雷达数据获取率、风廓线雷达与常规探空探测风的相关性等进行了分析。结果表明:风廓线雷达平均数据获取率随高度的增加先增大后减小,3000米以下平均数据获取率都在60%以上。雷达探测数据存在日出后数据缺测率高,午后缺测率低的变化趋势。各层数据获取率与气温和比湿的相关系数分别在0.45和0.35左右。对比风廓线与常规高空探测数据发现:二者v分量的相关系数大于u分量;各高度层中400米到1900米的u分量的相关系数在0.4以上,500米到3400米的v分量的相关系数都在0.6以上;风廓线雷达与常规探空数据u分量相关系数随风速的增大时而减小,从春季到冬季u、v分量相关系数都呈减小趋势。各个季节中风廓线雷达与常规探空数据风速平均偏差春季最小、冬季最大。  相似文献   

5.
风廓线雷达与天气雷达风廓线数据的融合及应用   总被引:2,自引:1,他引:1  
阮征  高祝宇  李丰  葛润生 《气象》2017,43(10):1213-1223
风廓线雷达与多普勒天气雷达风廓线产品均可以获取高时间分辨率的高空风信息,但两种遥感测风的探测原理及时空代表性不同。在对风廓线雷达进行质量控制处理、剔除降水粒子空间不均匀分布对数据可信度影响之后,根据风廓线雷达与天气雷达风廓线数据探测原理差异,进行不同时间代表性的风廓线数据的空间匹配试验,确定与天气雷达风廓线数据进行融合的风廓线雷达数据最优时间分辨率,结果为1 h。利用2015年7月北京南郊观象台的探空、风廓线雷达、天气雷达测风数据进行三种高空风的一致性比对,结果表明三种测风数据具有较好的一致性,均方根误差分别为2.3和2.5 m·s~(-1);60、30以及6 min不同时间代表性风廓线雷达数据与天气雷达风廓线数据之间的均方根误差分别为2.6、2.8及3.1 m·s~(-1),60 min数据的融合效果最佳,低空尤其明显。利用广东省2014年5月的风廓线雷达观测网以及天气雷达网风廓线数据进行了高空风场的融合分析试验,融合分析场提供了更为丰富的高空中尺度水平风场信息,低空的涡旋更加明显。  相似文献   

6.
为探讨微波辐射计和风廓线雷达探测数据的准确性和可用性,利用天津全运会期间获取的GPS探空资料,分析不同天气条件下微波辐射计探测温湿度、风廓线雷达测风的误差特征.结果表明:晴天、云天和雨天条件下,微波辐射计反演低空温度廓线效果均较好,反演高空温度廓线误差较大,云天条件下,反演的整层温度廓线与探空实测值相关性最优;3种天气...  相似文献   

7.
测风激光雷达和风廓线雷达作为L波段探空测风的有效补充,均可以提供高时空分辨率的大气风场信息,然而由于工作原理和适用条件存在明显差异,在探测性能上各有优缺点,单一设备的探测数据已不能满足精细化预报的要求。本研究使用2020年1—5月北京南郊观象台的L波段探空资料对同址观测的测风激光雷达和风廓线雷达进行了数据质量评估,结果表明测风激光雷达与探空的一致性较高,U、V分量的相关系数分别为0.97和0.98,均方根误差分别为1.1和0.95 m·s-1,然而在2 km以上数据获取率较低且偏差较大;风廓线雷达与探空相比,U、V分量的相关系数分别为0.94和0.93,均方根误差分别为2.94和2.91 m·s-1,风廓线雷达的探测距离虽然更远,但在0.5 km以下和6 km以上的测量偏差较大。考虑到两种测风雷达在不同探测高度上的性能优缺点,提出分段曲面拟合法对两者的水平风资料进行融合处理,并选取个例对融合效果进行验证,结果表明,融合后的风廓线与融合前相比,风向和风速的一致性均得到明显提升。  相似文献   

8.
对西昌发射场L波段雷达、风廓线雷达和GPS测风数据进行对比分析,对不同季节、不同风速条件、不同高度下的风向和风速数据进行相关性分析,结果表明:发射场干季风速数据相关性较高,风向数据相关性较低,雨季风速数据相关性较低,风向数据相关性较高;随风速变大,L波段雷达和GPS测风的数据相关性越来越高,二者与风廓线雷达测风数据的相关性明显变低;在各高度层风向相关性均较高,在低层风速相关性较低,在中高层风速相关性较高。   相似文献   

9.
利用2014—2015年陕西西安泾河站L波段探空数据和ERA-Interim再分析资料,与同期长安站风廓线雷达数据进行对比分析,确定风廓线雷达数据的可靠性。结果显示风廓线雷达资料与L波段探空资料、ERA-interim再分析资料整体上相关性较好,相关系数随高度的增高而增大,在1 500~2 500 m之间达到显著相关。不同时刻数据对比结果显示风廓线雷达白天观测结果整体上优于夜间。从平均状态来看,风廓线雷达在描述平均态过程中与探空和再分析资料基本一致,即风廓线雷达数据可用于实际应用和研究。  相似文献   

10.
文章利用上海边界层风廓线雷达网中3台分别布设在松江泖港和嘉定F1赛车场的TWP3型风廓线雷达以及嘉定外岗的LAP3000型风廓线雷达,在2010年初冬和2011年盛夏各一个月时段的连续原始测风数据,逐个与上海宝山GFE(L)-1型二次探空雷达在相同时段中的原始测风数据进行了对比分析研究.并且还将同布设在嘉定地区的两台不同型号的风廓线雷达进行了测风数据的互比分析.在基本稳定的天气条件下,嘉定F1赛车场、松江泖港以及嘉定外岗风廓线雷达各自与宝山GFE(L)-1型二次雷达探空测风数据进行对比分析的匹配样本数依次是6733、7350和7013对,其在盛夏时段对比统计的各层风速的平均标准差分别是3.34、3.37和4.03m·s-1,在初冬时段则为3.22、3.22和3.42m·s-1.参与互比分析的F1赛车场TWP3型风廓线雷达和外岗LAP3000型风廓线雷达之间的匹配样本数是71981对,其在盛夏时段互比统计的风速平均标准差是3.63 m·s-1,在初冬时段为4.12 m·s-1.有统计曲线表明,本研究中两台TWP3型风廓线雷达与宝山GFE(L)-1型二次雷达探空测风的误差均为2~4 m·s-1,其比对精度明显优于嘉定外岗的LAP3000型风廓线雷达.文章还提出了风廓线雷达的“有效探测高度”新概念.  相似文献   

11.
利用2018—2021年宁波市奉化区和余姚市两部6~8 km对流层风廓线雷达实时观测资料,对两部风廓线雷达的数据传输稳定性、探测性能和降雨辅助预报能力进行了统计与对比分析。结果表明,通常情况下宁波两部对流层风廓线雷达运行稳定,故障率低,数据获取率则会因月份、季节、天气条件和降水等级的变化而有所不同。从月份来看,1月、12月数据获取率最差,6月、7月最好;从季节来看,数据获取率按照夏季、秋季、春季和冬季从高到低排序;按晴天、雨天来分,雨天有降水的数据获取率普遍好于晴天无降水;从降水等级(中雨、大雨、暴雨)来看,12 h内,大雨情况下的数据获取率和有效探测高度最好,中雨情况下的数据获取率最差、有效探测高度最低。风廓线雷达对垂直速度的观测资料对降雨预报具有一定的指导意义。  相似文献   

12.
丘陵地区边界层风廓线雷达数据统计特性分析   总被引:3,自引:2,他引:1  
采用数据获取率来分析和评价风廓线雷达的探测能力, 对通过2012年的风廓线数据进行统计分析。结果表明:数据获取率和信噪比都随季节变化, 夏季探测能力大于冬季。按照数据获取率达到80%的要求, 确定边界层风廓线雷达无降雨天气有效探测高度为3 km, 并确定低模和高模最佳衔接高度为0.6 km, 能够获得更好的数据获取率。在无降雨天气, 信噪比随高度呈现对数函数单调递减的变化规律, 夏季信噪比的衰减程度比冬季大;在降雨天气, 信噪比随高度呈现一次函数的变化规律, 其斜率范围在-10.44~-2.47之间, 而夏季信噪比的衰减程度比冬季小。  相似文献   

13.
风廓线雷达在一次短时暴雨过程中的应用   总被引:1,自引:0,他引:1  
利用2014年8月24日天津地区一次短时暴雨天气的3部风廓线雷达资料和降水实况资料,对比分析降水发生、维持和消亡期间风廓线雷达资料的变化特征,以探讨风廓线雷达对降水天气的监测能力。结果表明:1)风廓线雷达不仅能够反映大气层结上冷下暖的结构,并且能够探测到切变线的存在,对风的垂直结构有较强的探测能力。2)当降水出现时,垂直速度和大气折射率结构常数明显增大。4 m·s~(-1)的垂直速度出现和消失时刻,对应降水的开始和结束时刻;降水期间,4000 m高度以下的垂直速度越大降水越强。西青、静海站的折射率结构常数与降水强度之间有很好的对应关系,但不同地区的大气折射率结构常数值对降水强度的指示标准并不一致。3)在降水最强阶段,风廓线雷达数据获取率明显下降,因此低的数据获取率对强降水有一定的指示意义。  相似文献   

14.
利用2011年12月~2013年3月CFL-03型风廓线雷达在乌鲁木齐市的风探测数据与同期的常规探空数据开展了比对分析,从而对风廓线雷达探测数据的可靠性和探测能力给予了评估。结果表明,受乌鲁木齐四季不同的气候背景影响,CFL-03型风廓线雷达的数据获取率在夏季最高,在冬季最低,80%的数据获取率等值线夏季、冬季各自达到的高度分别为4500m和1980m;受低空地物回波、探测盲区等因素影响,240m以下风廓线雷达探测的风速误差较大,240m以上风廓线雷达四季探测的风速普遍小于实况,误差在-1~0m/s之间的出现频率最高,介于28.8%~31.8%,且在四季最大频率出现的高度有所差异,总体来看夏季风速误差相对较小;风向误差总体在-22.5°~0°之间的出现频率最高,且随着高度增加频率增加;风廓线雷达风速的探测能力优于风向,二者与实况的相关系数各自为0.9左右和0.6~0.8;通过长时间序列的风速、风向资料的比较,说明CFL-03型风廓线雷达能够较为准确地反映冬季天气过程的演变,且能够较为精细地刻画夏季短时强降水天气过程中高低空气流的变化特点。在综合考虑低空地物回波、探测盲区因素以及高空气球探空飘移等多种因素影响的情况下,可见CFL-03型风廓线雷达对乌鲁木齐大气环境和天气过程拥有较可靠的监测能力。  相似文献   

15.
使用浙江探空数据对EC再分析数据评估发现两者风场存在较好的相关性,可用EC再分析数据取代探空数据对风廓线数据进行评估。评估结果显示当无降水时,风廓线雷达数据与EC再分析数据相关系数在0.85~0.9之间;当有降水时,两类数据相关系数在0.7~0.8之间。统计结果还显示,无降水时风廓线雷达数据在中层2~4 km与EC再分析数据相对误差较小,在低层和高层由于相关资料的缺测造成相对误差较大。有降水时风廓线雷达数据与EC再分析数据相对误差随高度变化特征不明显。通过对台风个例的风力演变特征分析发现,雷达资料的时空完整性都比较好,相对探空数据可以观察到系统演变过程中更精细的风力结构。  相似文献   

16.
CFL-06型风廓线雷达与L波段探空雷达测风对比分析   总被引:1,自引:0,他引:1  
为探讨风廓线雷达资料的准确性和可用性,将2016年5月2017年4月张家口的风廓线雷达与L波段探空雷达测风资料进行对比分析。结果表明:1)张家口站大多高度层二者风速呈显著正相关,00:00的相关性优于12:00的,8km以上未通过显著性检验。2)4.11km以下风廓线雷达较L波段探空雷达水平风速偏大,平均误差为0.00~1.50m/s;4.11km以上风廓线雷达较L波段探空雷达水平风速偏小,平均误差为0.00~22.13m/s,并随高度的增加而增大。3)水平风速有效样本率(风速差≤3m/s)整体随高度增加呈先增大后减小的趋势,中低层(1.23~3.63km)的有效样本率较高,为60.0%~70.0%。4)2.196.03km各高度层水平风向的有效样本率(风向差≤20°)较大,稳定在70%~80%,有降水时风向有效样本率随高度的增高而增大,且各高度层波动较大。两个时次风向有效样本多集中在风向差为10°的范围内,28km各高度层有效样本率(风向差≤10°)可达到40%~60%。  相似文献   

17.
时间分辨率是风廓线雷达的一个重要指标。根据风廓线雷达工作原理和时间分辨率计算方法,提出一种利用波束轮转技术来提高风廓线雷达时间分辨率的新方法。风廓线雷达使用该方法进行探测时,采用波束优先顺序进行观测,当雷达完成一次完整的观测后,每完成一个波束的观测,将该波束的观测数据替代之前观测数据中该波束的数据,其它波束使用之前的观测数据,组合成一个新的数据后,再进行后续处理。2018年10月1—31日利用L波段风廓线雷达开展了相关观测试验,并将根据两种模式所得结果与探空数据结果进行对比。试验结果表明,使用波束轮转技术可以将风廓线雷达的时间分辨率由6 min提升至1 min,在反演得到的风廓线结果上能够看到明显的变化过程;从与探空数据的对比结果看,使用波束轮转技术得到的大气风场实际情况更加吻合。  相似文献   

18.
风廓线雷达组网资料初步对比分析   总被引:7,自引:2,他引:5  
董丽萍  吴蕾  王令  赵城城  柳云雷 《气象》2014,40(9):1145-1151
以L波段探空雷达探测到的水平风为标准对全国风廓线雷达探测到的水平风的可信度进行评估,得到:风廓线雷达探测到的水平风在700 hPa高度以下与L波段探空雷达测风有较好的一致性;并且将风廓线雷达探测到的垂直速度与同址地面自动气象站观测到的1 h雨量进行相关性分析,得出垂直速度大小能很清楚地反映降水的开始、结束以及降水的强度;最后将全国风廓线雷达探测到的水平风进行组网对比分析,得出全国风廓线雷达探测得到的水平风在700 hPa高度下是可信的,风向可信度随探测高度的增加而增大。风速可信度随探测高度的增加而降低。  相似文献   

19.
随着风廓线雷达技术的发展,高空风探测参量越来越多,数据精度不断提高,探测能力得到了极大提升。评估风廓线雷达数据置信度是风廓线雷达应用中需要解决的重要问题。本文基于径向数据和风场合成两个阶段,在风廓线雷达数据反演过程中形成数据置信度算法,并引入噪声电平。同时,利用南京同站址风廓线雷达和探空1 a的资料进行匹配比对,对置信度算法性能进行评估,结果表明该置信度算法可行。将置信度算法植入风廓线雷达数据处理软件中,能实时输出含置信度的风廓线雷达产品数据,有利于预报人员合理使用置信度较高的风廓线雷达产品数据。对于置信度较差的产品数据进行分析,可有助于及时发现雷达的潜在故障。  相似文献   

20.
多普勒雷达风廓线资料可用性评估   总被引:4,自引:4,他引:0  
利用阳江大气探测基地拥有多普勒雷达、L波段探空雷达和地面观测站于一体的条件,将多普勒雷达高密度的VAD风廓线资料与L波段雷达资料进行对比,分析其相关性,得出多普勒VAD风廓线资料在探测资料齐全时,与L波段雷达资料变化趋势一致;一般情况,多普勒风廓线探测值比同一层的探空风偏小;多普勒风廓线RMS误差资料代表多普勒风廓线资料与探空资料的一种差异趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号