首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Many lakes in the Tibetan Plateau (TP) experienced dramatic lake level changes in the late Quaternary, as suggested by well-preserved paleo-shorelines up to ∼200 m above present lake levels. These relic shorelines provide direct geomorphic record to reconstruct past lake level fluctuation history and water volume changes, linked closely to variations in paleo-climatic controls including Asian monsoon, westerlies and glacial meltwater. In this study, 27 near-shore sediment samples from three of eight paleo-shorelines at north of Nam Co were dated by Optically Stimulated Luminescence (OSL) technique, using coarse grains of quartz and potassium feldspar.Our results indicate that: 1) S1 is the highest/most developed shoreline (+26 m). Sediment from upper part of S1 has a consistent age of ∼25 ka (nine samples from 3 gullies), suggesting a high lake level of Nam Co occurred around 25 ka. An overflow point west of Nam Co has a close elevation to that of S1 and thus limits the presence of higher lake levels; 2) sediment profile from the slightly lower S2 (+22 m) contains two parts, silty sand (6.9–8.9 ka) at the bottom and shoreline deposits atop (∼2.3 ka), suggesting Nam Co maintained a relative high lake level in the early Holocene and such lake level occurred again at about 3.0–2.0 ka; 3) In contrast to the swift variations of monsoon precipitation and glacial meltwater in the late Quaternary, water level of Nam Co remained relatively stable during the period from ∼25 ka to about early Holocene (from +26 m to +22 m), implying a continuous outflowing stage and lake infill constantly exceeds evaporation; 4) S5 (+11 m) has an age of 0.7–1.4 ka. Nam Co showed a much accelerated pace of shrinkage since about 2.0 ka in the late Holocene in roughly two steps: it dropped from +22 m to +11 m from ∼2.0 ka to 1.4 ka, and subsequently dropped another 11 m after 0.7 ka.  相似文献   

2.
Qinghai Lake, on the northeastern Qinghai-Tibetan Plateau, is the largest extant closed-basin lake in China, and has been the subject of numerous palaeoclimatological and palaeoenvironmental studies. In this study, 32 samples of aeolian sand, loess and palaeosol at six sites, and 1 sample of shoreline deposits underlying aeolian deposits were dated using optically stimulated luminescence (OSL). Where available, OSL ages are in agreement with previously published 14C ages. Our dating results, in combination with previous published ages on aeolian deposits showed that: (1) The oldest aeolian deposits around Qinghai Lake are in excess of 165 ka. (2) Aeolian deposition then began at ∼14 ka in the Qinghai Lake area. Periods of palaeosol formation occurred at ∼16.9 ka, ∼12.2–11 ka, ∼10–9 ka, ∼5.2–4 ka, and ∼3.9–0.7 ka. (3) The accumulation intervals of palaeosols are generally consistent with drilling-core-based environmental change proxies, indicating that palaeosols were formed during wet periods with higher vegetation cover. (4) A depositional hiatus period of ∼40–50 ka exists between the surface mantle aeolian deposits and underlying gravel deposits. (5) Lake levels during the Holocene did not exceed 3205.2 m elevation (11.8 m above recent lake level of April, 2010).  相似文献   

3.
The Qaidam Basin in the northeastern Qinghai–Tibetan Plateau (QTP) is one of the largest hyper-arid intermontane basins in the northern hemisphere, and has abundant records for the study on palaeo-lake level fluctuations and palaeoclimatic changes. Significant efforts have been invested to define the timing of shoreline deposits using radiocarbon dating. However, due to the dating limit, the absence of organic materials and carbon reservoir effects for radiocarbon dating in arid areas, it is difficult to establish a reliable chronology for shoreline deposits. Therefore, controversy exists regarding the chronology for the high lake level in the Qaidam Basin, as well in the QTP. Some proposed that high lake levels occurred during late Marine Isotope Stage (MIS) 3, while others recently argued that the highest lake level in the QTP and adjacent regions existed in MIS 5. In Gahai Lake (now a salt lake), we investigated a section comprising lacustrine and shoreline deposits, which was about 25 m above the present lake level. Seven samples were collected for quartz optically stimulated luminescence (OSL) dating. A sample collected from a fine sand layer (the bottom of the section, and 12 m above the present lake level), which was assumed to have been deposited underwater, gave an OSL age of 82 ± 8 ka. It suggested that the lake level was at least 12 m higher than present in late MIS 5. The high lake level could maintain till about 73 ± 6 ka, and then decreased. This lake level decrease resulted in a gravel layer deposit between 73 ± 6 and 63 ± 6 ka (roughly during MIS 4). The lake level rose again (about 24 m above the present lake level) between 63 ± 6 and 55 ± 5 ka (roughly in early MIS 3). No lacustrine or shoreline deposits higher than the top of the current section were found around Gahai Lake. Thus, higher than present lake levels in Gahai Lake occurred in both late MIS 5 and early MIS 3.  相似文献   

4.
Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Valley, and the boundaries of the proposed LGM ice-damned Glacial Lake Washburn. The timing of these high lake levels has depended on 14C chronologies of algal layers within relict lacustrine deltas. To provide additional geochronometric data for the post-LGM lake-level history, we applied photon-stimulated-luminescence (PSL) sediment dating to polymineral fine silt and sand-size quartz from 7 perched-delta and 3 active-delta sites of different elevations along 3 major meltwater streams entering Lake Fryxell. Our PSL dating of 4 quartz-sand samples from core tops in the seasonal ice-free moat of Lake Fryxell (elevation ∼18 m a.s.l.) and two core-top moat samples from the seasonal moat of Lake Vanda in nearby Wright Valley establish that adequate PSL clock zeroing (by daylight) occurs in regional, modern shoreline deposits. Minimum-age micro-hole PSL results from the moats are consistently near 100 a. Minimum-age micro-hole age estimates for the deltas range from ∼50 to 100 a near the present lake level up to 13.4 ± 1.3 ka at 240 m. These are systematically younger than the comparable, reservoir-uncorrected, 14C ages that range from 7 ka (cal yr BP) to 13 ka (cal yr BP) near lake level up to 20 ka (cal yr BP) at 220–240 m elevation. Our results indicate the occurrence of a dramatic discrepancy between PSL minimum-age and 14C age estimates that is presently unresolved.  相似文献   

5.
Detailed mapping of geomorphological and biological sea-level markers around the Capo Vaticano promontory (western Calabria, Italy), has documented the occurrence of four Holocene paleo-shorelines raised at different altitudes. The uppermost shoreline (PS1) is represented by a deeply eroded fossiliferous beach deposit, reaching an elevation of ∼2.2 m above the present sea-level, and by a notch whose roof is at ∼2.3 m. The subjacent shoreline PS2 is found at an elevation of ∼1.8 m and is represented by a Dendropoma rim, a barnacle band and by a wave-cut platform. Shoreline PS3 includes remnants of vermetid concretions, a barnacle band, a notch and a marine deposit, and reaches an elevation of ∼1.4 m. The lowermost paleo-shoreline (PS4) includes a wave-cut platform and a notch and reaches an elevation of ∼0.8 m. Radiocarbon dating of material from individual paleo-shorelines points to an average uplift rate of 1.2–1.4 mm/yr in the last ∼6 ka at Capo Vaticano. Our data suggest that Holocene uplift was asymmetric, with a greater magnitude in the south-west sector of the promontory, in a manner similar to the long-term deformation attested by Pleistocene terraces. The larger uplift in the south-western sector is possibly related to the additional contribution, onto a large-wavelength regional signal, of co-seismic deformation events, which are not registered to the north-east. We have recognized four co-seismic uplift events at 5.7–5.4 ka, 3.9–3.5 ka, ∼1.9 ka and <1.8 ka ago, superposed on a regional uplift that in the area, is occurring at a rate of ∼1 mm/yr. Our findings places new constrains on the recent activity of border faults south of the peninsula and on the location of the seismogenic source the 1905 destructive earthquake.  相似文献   

6.
Sedimentary deposits in the foreland basin of the northeastern Qilian Mountains are crucial documents recording tectonic activity and climate changes on the Tibetan Plateau. In this study, luminescence dating was used to date alluvial conglomerates and fluvial terrace sediments collected from the Beida River in the Jiuquan Basin, a foreland basin in the Hexi Corridor, northeastern Qilian Mountains. Detailed sedimentology and luminescence ages reveal that alluvial conglomerates accumulated from before 620 ka to 12 ka and that sediment accumulation rates increased at ∼330 ka and ∼35 ka, coinciding with the dates of two tectonic events (∼350 and ∼50 ka) and followed by climate cooling (from marine isotope stage (MIS) 9 to MIS 8 and from MIS 3 to MIS 2). This reveals that variations in the sediment accumulation rates are controlled by the coupling of tectonic uplift and climate cooling. The highest terrace (T7) that developed on the alluvial conglomerate base formed at ∼ 12 ka. The incision rate in the early Holocene was ∼2.1 mm/yr and increased to ∼14.6 mm/yr during the middle and late Holocene. The variations in the river incision rate provide geomorphic evidence for Holocene climate patterns in arid and semiarid areas. Luminescence dating offers a credible temporal framework for the deposits and reveals climate and tectonic effects on the evolution of the foreland basin, northeastern Qilian Mountains.  相似文献   

7.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

8.
A cliff outcrop called Kluckow, in the Baltic Sea area, with a (glacio-) fluvial to (glacio-) lacustrine succession, provides a unique opportunity to resolve uncertainties in the timing and extent of several poorly constrained Weichselian ice advances. Based on a detailed lithofacies analysis, we selected four sampling horizons for luminescence dating to determine a depositional chronology. We measured both coarse-grain quartz and potassium-rich feldspar for age determination using optically stimulated luminescence (OSL) and post-IR infrared stimulated luminescence (pIRIR). Furthermore we addressed potential problems such as incomplete bleaching and quartz saturation effects. The resulting luminescence-chronology, supported by one radiocarbon age, illustrates a depositional time interval of the investigated sequence between ∼62 and ∼22 ka. Within this sequence a mussel-bearing fluvial sand indicate interstadial climate conditions at approximately 46 ka. The upper part of the section is composed of a 4 m thick glaciolacustrine silty clay and an overlying glaciofluvial sand; the latter yielded an OSL age of ∼22 ka. Shortly after these sequences formed, the subsequent ice advance (indicated by the overlying till sheet) reached the study area. Based on our new chronology and lithofacies analysis, we conclude that the Scandinavian Ice Sheet did not reach the study area between ∼62 and ∼22 ka.  相似文献   

9.
The Gurbantunggut Desert is the second-largest desert in China, located in the westerly-dominated region of north-western China. Previous understanding of palaeoclimate of this desert was mostly based on lake and loess records from the Junggar Basin and Tian Shan Mountains, whilst direct dating of sedimentary records from the desert was very limited. This study applies high-resolution post-infrared infrared stimulated luminescence (pIRIR) dating to three sedimentary profiles at the southern edge of the Gurbantunggut Desert, which contain aeolian sand and water-lain sediments, recording palaeoenvironmental changes at the desert margin since the Last Glacial Maximum (LGM). Different pIRIR dating procedures were applied for samples with different ages. For Holocene-aged samples, a single-aliquot regenerative-dose (SAR) pIRIR procedure based on a three-stepped pIRIR measurement at 110 °C, 140 °C and 170 °C was used, and a standard growth curve (SGC) procedure yields an equivalent dose (De) similar to that of the full-SAR procedure; thus, is applicable for accelerating De measurement. For samples much older than the Holocene, a multi-aliquot regenerative-dose (MAR) pIRIR procedure based on a three-stepped pIRIR measurement at 150 °C, 200 °C and 250 °C was found to be the optimal dating procedure, because a SAR procedure would yield underestimated ages due to uncorrected initial sensitivity change. pIRIR dating results of the investigated profiles reveal a substantial sand accumulation during the LGM, an intensification of aeolian deposition at ∼12 ka and a wetter depositional environment at ∼10–8 ka. A rapid fluvial deposition is dated at ∼20–19 ka, corresponding to the deglaciation period. The sedimentary records from the desert margin show some correlation with lake and loess records in the same region and suggest a complex response of the desert environment to different climatic factors.  相似文献   

10.
Lake Karakul in the eastern Pamirs is a large and closed-basin lake in a partly glaciated catchment. Two parallel sediment cores were collected from 12 m water depth. The cores were correlated using XRF analysis and dated using radiocarbon and OSL techniques. The age results of the two dating methods are generally in agreement. The correlated composite core of 12.26 m length represents continuous accumulation of sediments in the lake basin since 31 ka. The lake reservoir effect (LRE) remained relatively constant over this period. High sediment accumulation rates (SedARs) were recorded before 23 ka and after 6.5 ka. The relatively close position of the coring location near the eastern shore of the lake implies that high SedARs resulted from low lake levels. Thus, high SedARs and lower lake levels before 23 ka probably reflect cold and dry climate conditions that inhibited the arrival of moist air at high elevation in the eastern Pamirs. Low lake levels after 6.5 ka were probably caused by declining temperatures after the warmer early Holocene, which had caused a reduction in water resources stored as snow, ice and frozen ground in the catchment. Low SedARs during 23–6.5 ka suggest increased lake levels in Lake Karakul. A short-lived increase of SedARs at 15 ka probably corresponds to the rapid melting of glaciers in the Karakul catchment during the Greenland Interstadial 1e, shortly after glaciers in the catchment had reached their maximum extents. The sediment cores from Lake Karakul represent an important climate archive with robust chronology for the last glacial–interglacial cycle from Central Asia.  相似文献   

11.
Xinglong Cave, containing four human teeth, numerous mammalian fossils, stone artifacts and a Stegodon tusk with intentional and seemingly grouped engravings, is one of the most significant archaic Homo sapiens sites in south China, located 95 km south of Fengjie County, in Chongqing. In an attempt to constrain the age of the human relics, calcitic flowstone deposits with a significant detrital component were dated by U–Th methods using a leachate scheme. Total sample digestion MC-ICPMS dating was used to assess the reliability of the leachate technique. Six calcite samples from horizons beneath and above the fossil-bearing layer were dated. We obtained ages of 130 ± 9.1, 124 ± 11, 135 ± 12 and 127 ± 11 ka for the flowstones above the fossil layer with a weighted mean of 128.9 ± 5.2 ka. Two flowstone samples gave MC-ICPMS dates between 128.3 ± 3.3 and 152.4 ± 25.3 ka with an assumed detrital component to correct for the initial 230Th, which are consistent with results obtained using the L/L regression data from layer U-4 within uncertainty. All errors herein quoted at the 2σ level. Ages determined for the flowstone underlying the fossil-bearing layer were 221 ± 29 to 189 ± 19 ka with a weighted mean age of 199 ± 16 ka. These results are stratigraphically consistent within error limits and show that the cave was occupied by Fengjie Man within the time range of ∼200 to ∼130 ka. These new U-series ages of flowstones in association with human teeth and an engraved stegodon tusk at the Xinglong Cave site provide valuable geochronologic information for the study of the origin of modern humans in East Asia and earliest human art.  相似文献   

12.
Optically stimulated luminescence (OSL) dating is becoming a useful technique to yield absolute age of organic-poor sandy deposits. The buried tidal sand body (BTSB) in the coastal zone of northern Jiangsu Province, China, has been suggested to have the same origin as the offshore radial sand ridge in the Yellow Sea. However, chronological constrain of the BSTB is still quite limited. In this study, OSL measurements were conducted using silt-sized multi-grain and coarse-grained single-grain quartz to constrain the depositional history of a 25.6 m core from the BTSB. A low luminescence sensitivity of quartz was observed, and only ∼1.04% of the grains passed the standard rejection criterion for single-grain measurement. Analysis of paired OSL ages from two grain-size fractions using different protocols showed that silt-sized quartz ages were underestimated of 0.14–1.35 ka in comparison to coarse-grained quartz in the depth interval of 5.8–22.4 m. We interpret such an age discrepancy as the effects of lateral infiltration of fine-grained sediment into the sand body due to dynamic feature of channel-ridge system on the shelf. As far as we know, it is the first time that such infiltration is demonstrated through OSL dating. Our OSL data indicated that there is a significant hiatus between the Late Pleistocene stiff clay layer (50–18 ka) and the Holocene sequence. Holocene deposits only occurred in the last 2 ka, with rapid accumulation of ∼17 m-thick sediments at ∼2–1 ka, a slower accumulation between ∼1 and 0.1 ka and rapid land emergence through an accretion of ∼4 m-thick sediment over the past ∼0.1 ka. This study highlights the complexity of OSL dating in highly dynamic sedimentary environments. Therefore, examining different grain size fractions and comparing different measurement protocols are highly deserved in carrying out OSL dating in such environments.  相似文献   

13.
In the past decades, archaeologists have found evidences for prehistorical human activity in the Qinghai–Tibetan Plateau (QTP). In 1982, some Paleolithic stone tools were found in a section from a terrace of the Xiao Qaidam Lake in the Qaidam Basin, NE of the QTP. The age of this Paleolithic site has remained unknown by far. Some believed that the age of human inhabitation in this Paleolithic site was about 30 ka. In this study, quartz optically stimulated luminescence was used to date 10 samples collected from four sections in the Xiao Qaidam Lake, using the single-aliquot regeneration-dose protocol. The two samples from section XCDH2, which is from a lake terrace about ~7–8 m above the present lake level and in which the top gravel layer contains stone tools, were not well-bleached before deposition. Their ages (>101 and >159 ka) determined by SAR should be considered minimums. OSL dating results of six samples from two sections (XCDH1 and XCDH3) of an adjacent lake terrace, which is ~12 m above the present lake level, suggest two possibilities for the age of the tool-bearing gravel layer: (1) younger than ~3 ka if the lake terrace of XCDH2 is younger than the terrace represented by XCDH1 and XCDH3; or (2) between ~3 and 11 ka if these two terraces are part of the deposit of the same time period. In either case, the age of the archaeological layer should be much younger than the previously proposed ~30 ka. As the climate in the early Holocene after 11 ka was increasingly warm and the Xiao Qaidam Lake area could be suitable for human inhabitation then, we deduce that the age range of ~3–11 ka is more likely the time frame for this archaeological site. The age of 3.1 ± 0.3 ka for the surface of terrace XCDH1/XCDH3 suggests a significant lake level decrease after this time and a corresponding arid event at ~3 ka; the lake level did not reach this level again after that time. Section XCDH4 is more than 40 m above the present lake level, and two samples gave ages of 37 ± 4 and 51 ± 4 ka. These two dates and the dates from the other sections demonstrate that two lake levels higher than present existed for Xiao Qaidam Lake, one at ~12 m and dated ~3–11 ka and the another at >40 m and dated ~37–51 ka.  相似文献   

14.
Loess deposits surrounding the high mountainous regions of arid central Asia (ACA) play an important role in understanding environmental changes in Eurasia on orbital and sub-orbital time scales. However, problems with dating loess in ACA have limited the interpretation of climatic and environmental data, especially Holocene data. We selected a typical loess/paleosol sequence (LJW10) on the northern slope of the Tianshan Mountains in ACA consisting of 280 cm of loess with multiple paleosols formed in the upper 170 cm of the section. We applied quartz OSL dating to coarse-grained (63–90 μm) fractions, and newly developed K-feldspar pIRIR dating protocols to both coarse-grained and medium-grained (38–63 μm) fractions of the samples from LJW10 section. Internal checks of the quartz OSL dating indicate that the single-aliquot regenerative-dose protocol on large aliquots (5 mm) is appropriate for equivalent dose (De) determinations and that the quartz ages of the loess samples are likely to be reliable. Luminescence characteristics and internal checks of the pIRIR dating indicate the pIRIR signal at a 170 °C stimulation temperature with a 200 °C preheat can be used for both coarse-grained and medium-grained De determinations. Anomalous fading tests for the pIRIR 170 °C signal indicate the pIRIR signals are stable and the anomalous fading of the pIRIR 170 °C signal can be ignored. Sunlight bleaching tests of the loess indicate the residual dose for the pIRIR 170 °C signal can also be ignored as it corresponds to only ∼9 years for the medium-grained K-feldspar and ∼85 years for the coarse-grained K-feldspar. The pIRIR ages of five medium-grained and coarse-grained K-feldspar samples are consistent with coarse-grained quartz OSL ages, and both the medium-grained and coarse-grained ages increase uniformly with depth, indicating these pIRIR ages are reliable. Based on the coarse-grained quartz OSL ages, and on coarse-grained and medium-grained K-feldspar pIRIR ages, an age-depth model for the paleosol-loess sequence was established by using a Bacon age-depth model. This model suggests eolian loess deposition began by at least ∼16 ka ago and that paleosol development on these eolian loess deposits began ∼5.5 ka, continuing to the present, with periods of high effective moisture at 5.5–4.9, 4.6–4.1, and 3.4–3.1 ka. This sequence suggests overall relative aridity during the early Holocene and an increase in effective moisture beginning ∼5.5 ka during the mid-late Holocene in ACA.  相似文献   

15.
Holocene flood events in the Yangtze River are associated with variations in East Asian Summer Monsoon (EASM) precipitation, and so Yangtze delta sediments may preserve information about the frequency and magnitude of EASM precipitation. These flood/drought cycles of the EASM directly affect the living standards of East Asian population. However, despite its importance, little chronological control is available for the Yangtze Delta sediments; because biogenic carbonate only occurs sporadically, it has proved the difficulty to discuss sedimentation mechanisms and rates in any detail.In 2013 two sediment cores (YD13-G3 and H1) were taken from the Yangtze subaqueous delta to investigate precipitation history. In this study, we investigate the potential of quartz OSL dating of the fine silt fraction (fine-grained quartz; 4–11 μm) from these cores to estimate the depositional age of the sediments. We test whether: (1) Yangtze subaqueous delta sediments contain quartz with suitable characteristics for dating, and (2) quartz grains are well-bleached during/before the transportation process, by examining a modern analogue of suspended particulate matter, and by cross-checking with the doses derived from infrared stimulated luminescence (IRSL) signals (both IR50 and pIRIR160) from feldspar in polymineral fine grains. We find that both the quartz and feldspar luminescence characteristics are satisfactory (quartz dose recovery ratio 1.067 ± 0.004; n = 250, pIRIR160 dose recovery ratio 1.01 ± 0.02; n = 151). Modern suspended particulate matter has measured quartz equivalent doses between 0.1 and 0.2 Gy, suggesting that this material was sufficiently bleached during/before transportation to allow dating of Holocene sediments (mean dose rates of ∼3 Gy ka−1). OSL ages of 44 samples from the 2 cores show apparently rapid accumulation at ∼6 ka between 9.65 and 5.50 m in core H1 and ∼2 ka throughout core G3 and between 5.0 and 0.0 m in core H1. The pIRIR160 signals suggest less light exposure of the core top sediments and of those from the transition layer between ∼6 ka to ∼2 ka, although there is no evidence for incomplete bleaching of quartz. The question remains as to whether significant deposition took place only at these two times, or whether the record has been disturbed by erosion/reworking.  相似文献   

16.
Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation.The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from ∼4.7 to 2.9 ka cal BP and consists of 5.5 m of laminated lacustrine, organo-clastic mud, covered by ∼1 m of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10–20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill – from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments – supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.  相似文献   

17.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

18.
Qinghai Lake is situated in the northeast of the Qinghai-Tibetan Plateau (QTP). Its size and proximity to the junction of three major climate systems make it sensitive to climate changes. Some investigations on shorelines of Qinghai Lake suggested highstands during MIS 3, but to what extent the lake level was higher than today is yet undetermined. Others proposed that the maximum highstands probably dated to MIS 5. It has also been shown that the lake level 120 m higher than today occurred at around 12 ka. Most of these previous ages were obtained using 14C dating or multiple-aliquot IRSL/OSL dating. For 14C dating, because of the dating limit (<40 ka) and the lack of suitable dating materials in this arid area, it is difficult to establish reliable chronological control. In the present study, seven samples collected from lacustrine deposits (five samples) and sand wedges (two samples) were dated using quartz optically stimulated luminescence (OSL) with the single aliquot regenerative-dose (SAR) protocol. OSL dating results showed that (1) the lake had experienced two high lake levels, one was in MIS 5 and another in early to middle MIS 3; (2) no evidence of high lake levels in MIS 4 has been found; (3) the alluvial gravels, whose surface is at an elevation of ~3246 m, were formed at least 28.8 ± 2.3 ka ago, and the widespread sand wedges within the alluvial gravels were formed during the period of 15.1–28.8 ka, which implied that the lake level had not reached an elevation of ~3240 m after 28.8 ± 2.3 ka.  相似文献   

19.
The Late Quaternary hydroclimatic evolution of lake systems in Mongolia remains unclear. Here we present a record of lake level variations at Orog Nuur in the Valley of Gobi Lakes in southern Mongolia, since the last interglaciation, based on paleo-shoreline dating using quartz optically stimulated luminescence (OSL) and K-feldspar post-infrared infrared stimulated luminescence (pIRIR) signals. Due to feldspar contamination that could not be eliminated, the OSL signals of quartz single-aliquots (SA), except for two Holocene samples, were unsuitable for dating and a double SA regenerative-dose (SAR) protocol was used for the quartz fraction of these two samples. The pIR50IR170 and pIR200IR290 signals of K-feldspar SA were used to date Holocene samples and old samples (>100 ka), respectively, with the SAR protocol. To determine the bleaching condition of the pIR200IR290 signals, the first pIRIR dating of K-feldspar single-grains of lake shoreline sediments in Mongolia was performed. The equivalent doses of K-feldspar grains show normal distributions, suggesting that the pIR200IR290 signals are well-bleached. Overall, the results, combined with those of previous studies, show that a mega-lake developed at 56 m above the modern lake level (a.m.l.) during MIS 5e (124.2 ± 6.8114.7 ± 8.0 ka). Holocene high-stands occurred in the last deglaciationearly Holocene (11.1 ± 1.0 ka) at 23 m a.m.l. and in the mid-Holocene (6.7 ± 0.83.3 ± 0.4 ka) at 2014 m a.m.l. The dimensions of the paleo-lakes were recovered, and a hydrological index indicates that the effective moisture during MIS 5e and the mid-Holocene was 10.7 times and 3.65.0 times larger than today, respectively. Finally, the possible mechanisms behind the lake level history are discussed based on correlation with independent paleoclimatic records.  相似文献   

20.
The normally-closed Caspian Sea is known for large changes in relative sea-level (of ∼170 m) during the late Quaternary. These transgressive/regressive events influenced the topography, sedimentation and ecosystems of a large area, of up to 1 million km2. The Volga River has played an important role in the water balance of the Caspian Quaternary basins but our understanding of the temporal evolution is poorly constrained. Recent studies on the evolution of the Lower Volga have focused mainly on the subaerial sequence of loess-palaeosol series corresponding to a long-duration Caspian low stand (the so-called “Atelian regression” from ∼90 to ∼25 ka). In this study we address, for the first time, the temporal evolution of the Volga River during the late Quaternary, as recorded in the many layers of alluvial sands at the Raygorod reference section. This 50 m high outcrop contains a complicated sequence of different types of interlayered alluvium (channel and floodplain facies), a loess-palaeosol sequence with a weakly developed palaeosol, and marine sediments of the Khvalynian transgression (Chocolate Clay facies). The new chronology, based on 35 samples, is derived using optically stimulated luminescence (OSL) analysis of sand-sized quartz, with support from post-infra-red infra-red stimulated luminescence (post-IR IRSL) from K-rich feldspar grains to date the older parts of the section. The new ages identify five stages of the topography development in the northern parts of the Lower Volga: (1) an MIS 5a flood-plain in deltaic/estuary environments (>90 ka) during a high-stand of the Caspian Sea (Hyrcanian transgression); (2) a transition from deltaic/estuary conditions to a river valley with normal alluvial sedimentation and sporadic stabilization reflected in palaeosol development (80–70 ka); (3) a palaeo-Volga channel migration at elevations of 4–8 m msl during 69–62 ka, evidence of a brief increase in Caspian Sea-level and blocking of the Volga flow; (4) a subaerial stage with high-speed accumulation of loess during MIS 4 to MIS 2, containing one weakly developed palaeosol (MIS 3c) and pedocomplex of three combined palaeosols of the beginning of MIS2 (30–24 ka); (5) a rapid Khvalynian transgression, starting at the Raygorod location at ∼18.3 ka, with relatively weak marine erosion of the top 40–60 cm of loess cover, presumably because of the rapid migration of the coastline in the flat Northern Caspian Lowland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号