首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Contini 《New Astronomy》2011,16(7):439-444
The visual magnitude profile of the symbiotic system Z And during the 1984–1986 activity period appears double peaked and the flux intensity is low compared to outbursts in other epochs. The detailed modeling of the observed spectra, accounting for the shells ejected by the red giant star, shows that the outburst is intrinsically single but distorted by the collision at different phases of the white dwarf wind with two close shells.  相似文献   

2.
We have computed a spherically symmetric model for the interaction of matter ejected during the outburst of a classical nova with the stellar wind from its optical component. This model is used to describe the intense X-ray outburst (the peak 3–20 keV flux was ~2 Crab) of the binary system CI Camelopardalis in 1998. According to our model, the stellar wind from the optical component heated by a strong shock wave produced when matter is ejected from the white dwarf as the result of a thermonuclear explosion on its surface is the emission source in the standard X-ray band. Comparison of the calculated and observed time dependences of the mean radiation temperature and luminosity of the binary system during its outburst has yielded very important characteristics of the explosion. We have been able to measure the velocity of the ejected matter immediately after the onset of the explosion for the first time: it follows from our model that the ejected matter had a velocity of ~2700 km s?1 even on 0.1–0.5 day after the outburst onset and it flew with such a velocity for the first 1–1.5 day under an external force, possibly, the radiation pressure from the white dwarf. Subsequently, the matter probably became transparent and began to decelerate. The time dependence of the mean radiation temperature at late expansion phases has allowed us to estimate the mass of the ejected matter, ~10?7–10?6 M . The mass loss rate in the stellar wind required to explain the observed peak luminosity of the binary system during its outburst has been estimated to be \(\dot M\) ~ (1 ? 2) × 10?6 M yr?1.  相似文献   

3.
GD 552 is a high proper motion star with the strong, double-peaked emission lines characteristic of the dwarf nova class of cataclysmic variable (CV) star, and yet no outburst has been detected during the past 12 yr of monitoring. We present spectroscopy taken with the aim of detecting emission from the mass donor in this system. We fail to do so at a level which allows us to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 min, this suggests that it is either a system that has evolved through the ∼80-minute orbital period minimum of CV stars and now has a brown dwarf mass donor, or that has formed with a brown dwarf donor in the first place. This model explains the low observed orbital velocity of the white dwarf and GD 552's low luminosity. It is also consistent with the absence of outbursts from the system.  相似文献   

4.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

5.
We have constructed the light curves of the symbiotic nova V1016 Cyg for the period 1971–2007 in a homogeneous photometric system close to UBV using our observations with the Zeiss-600 SAI telescope. Based on the observational data obtained with the 125-cm SAI telescope in 2000–2007, we have performed absolute spectrophotometry of the star in the range λ3700–9300 Å. The derived line intensities are compared with the data of other authors in the preceding years (1965–1988). The behavior of nebular lines showed the variations in electron density and, probably, electron temperature in the [OIII] emission region caused by a variable stellar wind from the hot component. All the available observations of the star confirm the theoretical conclusion that the nova-like outburst of V1016 Cyg was produced by a thermonuclear flash in the accreted envelope of a white dwarf.  相似文献   

6.
Following on our initial absorption-line analysis of fifteen novae spectra we present additional evidence for the existence of two distinct components of novae ejecta having different origins. As argued in Paper I one component is the rapidly expanding gas ejected from the outer layers of the white dwarf by the outburst. The second component is pre-existing outer, more slowly expanding circumbinary gas that represents ejecta from the secondary star or accretion disk. We present measurements of the emission-line widths that show them to be significantly narrower than the broad P Cygni profiles that immediately precede them. The emission profiles of novae in the nebular phase are distinctly rectangular, i.e., strongly suggestive of emission from a relatively thin, roughly spherical shell. We thus interpret novae spectral evolution in terms of the collision between the two components of ejecta, which converts the early absorption spectrum to an emission-line spectrum within weeks of the outburst. The narrow emission widths require the outer circumbinary gas to be much more massive than the white dwarf ejecta, thereby slowing the latter’s expansion upon collision. The presence of a large reservoir of circumbinary gas at the time of outburst is suggestive that novae outbursts may sometime be triggered by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than steady mass transfer through the inner Lagrangian point.  相似文献   

7.
Nova outbursts on rotating oblate white dwarfs   总被引:1,自引:0,他引:1  
A novel hypothesis is proposed in which the prolate geometry and latitudinal abundance gradients observed in nova ejecta are simultaneously explained as a natural consequence of the rotation and oblate distortion of the white dwarf. Thermonuclear runaway on the surface of an oblate rotating white dwarf is strongly affected by the local gravity, leading to stronger outbursts and faster outflows at the poles than in the equatorial regions. A unified scheme is presented which is capable of explaining the gross structures of the shells of classical novae, those 'recurrent novae' with giant companions, and symbiotic novae, which also show evidence for bipolar outbursts. It is shown that this hypothesis is capable of producing the observed geometry of the ejecta of the classical novae DQ Her 1934, V1500 Cyg 1975 and GK Per 1901, the recurrent nova RS Oph (1985 outburst), and the symbiotic nova HM Sge. Some observationally testable predictions which follow from this hypothesis are discussed.  相似文献   

8.
An intense outburst of hard radiation (with a peak flux of ~50 mCrab) was detected from the X-ray transient AX J1749.1-2733 by the IBIS/ISGRI gamma-ray telescope onboard the INTEGRAL observatory when the Galactic center field was monitored on September 8–10, 2003. Previously, this source had never been observed in a bright X-ray state. During the outburst, the source’s radiation spectrum was gently sloping and hard (extended to ~100 keV), followed a power law in the standard X-ray energy range, and had an exponential cutoff above 40–50 keV. The spectral hardness decreased with increasing flux. These and other properties described here and the shortness of the outburst (<2 days) allow the source to be attributed to the group of fast X-ray transients many representatives of which have an early O-B supergiant as their optical counterpart. Possible causes of the outbursts of fast transients are discussed. We show that accretion from the supergiant’s stellar wind should have led to intense persistent radiation from transients. The absence of radiation can be explained by the ejection of accreting matter from the system (propeller effect) during its contact with the magnetosphere of a rapidly rotating neutron star. Transient outbursts could originate in sources of this type if the spin period of their neutron star P s differed only slightly from the critical period P s * ? 3 s at which the propeller effect is still possible. The outburst is triggered by an insignificant rise in the local stellar wind density, by a factor of (P s * /P s)7/3. The entire outburst profile cannot be explained by an individual inhomogeneity in the wind, but is the reflection of a long-term (~2 days for AX J1749.1-2733) change in the rate of wind outflow from the supergiant’s surface facing the compact source. The rate of wind outflow could be enhanced through X-ray heating of the supergiant’s surface.  相似文献   

9.
Classical nova outbursts occur in binary systems containing a white dwarf accretor and a Roche-lobe-filling main-sequence star. The outburst is due to a thermonuclear runaway in the accreted material on the surface of the white dwarf, and results in the ejection of up to 10–4 M of material at velocities of several hundred to a few thousand kilometres per second. There is now strong evidence that the mass ejection takes place via a wind with secularly increasing velocity. The fast ejecta catches up with slower moving material ejected earlier in the outburst, forming a layer of shock-heated gas which gives rise to a short burst of soft X-ray emission. This emission was observed in V838 Her (Nova Herculis 1991), and was succesfully accounted for by the interacting winds model. In this paper, we present 2.5-D numerical hydrodynamics calculations of interacting winds in novae which consider the effects of the binary system on shaping the mass-loss, and show that many of the features seen in the optical shells of novae many years after outburst can be accounted for.This author is supported by a PPARC research assistantship  相似文献   

10.
A numerical technique for determining absorption line formation depths in the atmospheres of late-type stars and substellar-mass subdwarfs is proposed. The technique is based on estimating individual absorptions contributed by certain layers of the stellar model atmosphere to the resulting equivalent width of a spectral line. In particular, the proposed technique can be used when considering lithium absorption lines formed at the background of molecular bands. The technique is applied to the formation of lithium lines in stellar atmospheres, specifically, in the atmosphere of the Sun (spectral type G2V) and those of the red giant star in the binary system RS Oph (M2III), the giant carbon star WZ Cas (C6), and the brown dwarf LP944-20 (M9V).  相似文献   

11.
We present photometric measurements of the eclipsing dwarf nova and X-ray source GY Cnc. The observations were collected during outbursts and in quiescence. The investigation of plates from the Sonneberg archive showed that the mean outburst interval is about 210–270 days, that the outburst is very fast, and lasts for about 5 days.  相似文献   

12.
The second known outburst of the WZ Sge type dwarf nova GW Lib was observed in 2007 April. We have obtained unique multiwavelength data of this outburst which lasted ∼26 days. The American Association of Variable Star Observers ( AAVSO ) recorded the outburst in the optical, which was also monitored by Wide Angle Search for Planets , with a peak V magnitude of ∼8. The outburst was followed in the ultraviolet and X-ray wavelengths by the Swift ultraviolet/optical and X-ray telescopes. The X-ray flux at optical maximum was found to be three orders of magnitude above the pre-outburst quiescent level, whereas X-rays are normally suppressed during dwarf nova outbursts. A distinct supersoft X-ray component was also detected at optical maximum, which probably arises from an optically thick boundary layer. Follow-up Swift observations taken 1 and 2 years after the outburst show that the post-outburst quiescent X-ray flux remains an order of magnitude higher than the pre-outburst flux. The long interoutburst time-scale of GW Lib with no observed normal outbursts support the idea that the inner disc in GW Lib is evacuated or the disc viscosity is very low.  相似文献   

13.
We study the absorption lines present in the spectra of the long-period cataclysmic variable GK Per during its quiescent state, which are associated with the secondary star. By comparing quiescent data with outburst spectra we infer that the donor star appears identical during the two states and the inner face of the secondary star is not noticeably irradiated by flux from the accreting regions. We obtain new values for the radial velocity semi-amplitude of the secondary star,     , a projected rotational velocity,     and consequently a measurement of the stellar mass ratio of GK Per,     . The inferred white dwarf radial velocities are greater than those measured traditionally using the wings of Doppler-broadened emission lines suspected to originate in an accretion disc, highlighting the unsuitability of emission lines for mass determinations in cataclysmic variables. We determine mass limits for both components in the binary,     and     .  相似文献   

14.
Two outbursts and a minimum phase of the dwarf nova CN Orionis have been observed spectroscopically. One outburst was covered almost completely. The outburst spectra show periodic variations of the absorption lines which are interpreted with the formation of an elliptic disc during outburst stage. During decline from outburst a narrow emission line appears in the core of the broad H absorption line. The balmer decrement in the outburst phase is much steeper than in the minimum phase. This implies that during the outburst the emission line region is located more outward in the disk. The semi amplitude of the radial velocity curve was determined to K1=152 km/s±10 km/s. Using the photometric orbital period and an assumption about the inclination angle the approximate system parameters could be derived.Based on observations colleted at the European Southern Observatory, La Silla, Chile and at Mount Stromlo Observatory, Canberra, Australia.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

15.
We present spectroscopy and photometry of GD 448, a detached white dwarf – M dwarf binary with a period of 2.47 h. We find that the Na  I  8200-Å feature is composed of narrow emission lines, owing to irradiation of the M dwarf by the white dwarf, within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational redshift measurement from spectra of the Hα line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 ± 0.01 and 0.096 ± 0.004 M, respectively). We use a simple model of the Ca II emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 ± 0.020 R. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius, and is less than half the size of its Roche lobe. The thermal time-scale of the M dwarf is much longer than the cooling age of the white dwarf, so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the Hα emission from the M dwarf remains to be explained, but the strength of the line may be due to X-ray heating of the M dwarf owing to accretion on to the white dwarf from the M dwarf wind.  相似文献   

16.
In this paper, we discuss the early phases of the ongoing outburst that CI Cyg, a prototype symbiotic star, is currently undergoing after 30-year quiescence. We have tightly monitored CI Cyg in   B V R C I C  bands, starting a whole year before the onset of the outburst, and in addition we obtained numerous Echelle high- and low-resolution absolutely flux-calibrated spectra. The outburst started while the accreting white dwarf (WD) was being eclipsed by the Roche lobe filling M giant companion, and it was discovered during the egress phase on the second half of 2008 August. The system reached peak V -band brightness in early 2008 October and has been characterized by amplitudes  Δ B = 1.9, Δ V = 1.5, Δ R C= 0.9, Δ I C= 0.4  mag. At maximum V -band brightness, the outbursting WD had expanded to closely resemble an F3 II/Ib star, with   MV =−3.5, T eff∼ 6900 K  and   R = 28 R  . The high-ionization emission lines ([Ne  v ], [Fe  vii ], He  ii ) disappeared and only lower ionization lines were visible. Balmer and He  i emission lines declined in equivalent width but increased in absolute flux. The output radiated by the hot component during the outburst corresponds to nuclear burning proceeding at a  2 × 10−8 M yr−1  rate.  相似文献   

17.
I present pointed ROSAT PSPC observations of the pre-cataclysmic binary V471 Tauri. The hard X-ray emission (>0.4 keV) is not eclipsed by the K star, demonstrating conclusively that this component cannot be emitted by the white dwarf. Instead I show that its spectrum and luminosity are consistent with coronal emission from the tidally spun-up K star. The star is more active than other K stars in the Hyades, but equally active as K stars in the Pleiades with the same rotation periods, demonstrating that rotation — and not age — is the key parameter in determining the level of stellar activity.   The soft X-ray emission (<0.4 keV) is emitted predominately by the white dwarf and is modulated on its spin period. I find that the pulse profile is stable on time-scales of hours and years, supporting the idea that it is caused by the opacity of accreted material. The profile itself shows that the magnetic field configuration of the white dwarf is dipolar and that the magnetic axis passes through the centre of the star.   There is an absorption feature in the light curve of the white dwarf, which occurs at a time when our line of sight passes within a stellar radius of the K star. The column density and duration of this feature imply a volume and mass for the absorber that are similar to those of coronal mass ejections of the Sun.   Finally I suggest that the spin–orbit beat period detected in the optical by Clemens et al. may be the result of the interaction of the K-star wind with the magnetic field of the white dwarf.  相似文献   

18.
We report spectroscopic orbital periods of 0.147 d (=3.53 h) for V533 Her, 0.207 d (=4.97 h) for V446 Her and 1.478 d for X Ser. V533 Her (Nova Herculis 1963) shows absorption features in its He  i and Balmer lines which appear only in a limited range of orbital phase, suggesting that it is a low-inclination SW Sextantis star. V446 Her is unusual in that it has started normal dwarf nova eruptions after a nova outburst, but we find nothing else unusual about it – in particular, a distance estimate based on its dwarf nova outbursts agrees nicely with another based on the rate of decline of its nova eruption, both giving d ∼1 kpc. In X Ser, unlike in other old novae with long periods, no spectral features of the secondary star are visible. This and its outburst magnitude both suggest that it is quite distant and luminous, and at least 1 kpc from the Galactic plane.  相似文献   

19.
The probability that γ-ray bursts may be generated by the infall of comet-like objects on the neutron stars, as recently proposed by Harwit and Salpeter (1973), is reexamined. Although hypothetical cometary clouds around the parent star may survive the supernova outburst virtually untouched, the frequency of γ-outbursts due to the comet impact on the neutron star or white dwarf is only about 10?3 of the observed occurrence. A considerably higher rate of comets passing per year at critical periastron distance must be assumed if the γ-ray outbursts are to be due to the collision of coments with compact stars.  相似文献   

20.
A theoretical light-curve model of the 1985 outburst of RS Ophiuchi based on a thermonuclear runaway model is presented. The system consists of a very massive white dwarf (WD) with an accretion disk and a red giant. The early phase of the V light curve is well reproduced only by the bloated WD photosphere of the thermonuclear runaway model on a 1.35+/-0.01 M middle dot in circle WD, while the later phase is dominated both by the irradiated accretion disk and by the irradiated red giant underfilling the inner critical Roche lobe. The UV light curve is also well reproduced by the same model with a distance of 0.6 kpc to RS Oph. The envelope mass at the optical peak is estimated to be 2x10-6 M( middle dot in circle), indicating a rather high mass accretion rate of 1.2x10-7 M( middle dot in circle) yr(-1) between the 1967 and 1985 outbursts. About 90% of the envelope mass is blown off in the outburst wind, while the residual 10% (2x10-7 M( middle dot in circle)) has been left and added to the helium layer of the WD. The net increasing rate of the WD mass is 1.2x10-8 M( middle dot in circle) yr(-1). Thus, RS Oph is certainly a strong candidate for a Type Ia supernova progenitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号