首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ammonoids, conodonts, and fusulinids from the type sections of the Roadian and contiguous stages in western Texas and adjacent areas are analyzed and partially revised. Four successive Roadian ammonoid assemblages are distinguished and correlated with conodont zones; data on their distribution are presented. Based on the results obtained, the Roadian Stage is identified in the Boreal and Tethyan regions. Boundaries of the Roadian Stage defined accurately in the type sections of Texas are hardly recognizable elsewhere. Recognition of the upper boundary is especially difficult. Occurrence of Roadian fossils means that deposits of this age are present in a sequence, but they cannot be differentiated from underlying and overlying beds. Like in the type area, the stage lower boundary based on conodonts is above the level of significant changes in marine biota within the Boreal and Tethyan realms as well. The upper boundary is not marked by noticeable biotic events either. Correlation of the Roadian deposits is imprecise because their boundaries are formally established using distribution of relatively rare conodonts.  相似文献   

2.
中国侏罗纪年代地层学研究的现状   总被引:6,自引:2,他引:4  
沙金庚 《地层学杂志》2005,29(2):124-129
“国际地层表”依据菊石带建立起来的侏罗纪年代地层系统在全球海相侏罗系的划分和对比中有着广泛的应用,但却很难直接应用于非海相侏罗纪地层系统中。中国的侏罗系多属非海相,近年来我国地质工作者们不但将中国的海相侏罗系与全球侏罗纪年代地层系统进行了较合理的对比,发现了穿越海相三叠系-侏罗系界线的连续沉积的剖面,而且建立了非海相侏罗系的阶。但是中国非海相侏罗系区域性阶的时代和不同阶之间的界线有待海相化石和地层测年来确定或检验  相似文献   

3.
Study of floral succession from the Cretaceous-Paleogene boundary interval in Russian Far East (Zeya-Bureya depression), Northeastern Russia (Koryak Upland), and Northern Alaska (Sagavanirktok River basin) is crucial for better understanding palaeoclimatic and palaeogeographic factors, which controlled events in vegetation evolution at that time. The succession of fossil floras in the Zeya-Bureya depression includes plant assemblages of the Santonian, Campanian, early Danian, Danian, and Danian-Selandian age. The early Danian Boguchan Flora keeps continuity in composition and dominating taxa with the Campanian Late Kundur Flora. The Koryak Flora of the Amaam Lagoon area (Northeastern Russia) is dated as late Maastrichtian based on correlation of plant-bearing beds with marine biostratigraphy, whereas the Early and Late Sagwon floras of Northern Alaska are dated back to the Danian-Selandian and early Paleocene based on palynological and macrofloristic data. The Early Sagwon Flora is most close to the late Maastrichtian Koryak Flora of the Amaam Lagoon area in composition and main dominants, while the Late Sagwon Flora is comparable with the Danian or Danian-(?) Selandian flora from the Upper Tsagayan Subformation of the Amur area. In a florogenic aspect, trans-Beringian plant migrations from northeastern Asia and southern palaeolatitudes of the Far East, which became possible due to Paleocene climate warming in Arctic, have played an important role in forming of the Paleocene floras of Northern Alaska. Floras of the Far East and high latitudes of Asia and North America show no evidence of catastrophic event at the Cretaceous-Paleogene boundary. Their development was most probably controlled by climate changes, plant evolution and migration.  相似文献   

4.
The Regional Stratigraphic Scale (RSS) of the Permian deposits in northeastern Russia represents the only complete stratigraphic succession of Permian marine deposits distinguished in Russia, which serves as a standard at the correlation of Permian deposits of all regions of the eastern part of the Boreal Biogeographic Superrealm. However, a high level of faunistic endemism makes it extremely difficult to correlate directly stratons of the RSS with stages of the International Stratigraphic Scale (ISS) of the Permian deposits. The first U–Pb SIMS age datings of zircons from felsic tuffs of the Omchak Formation of the Ayan-Yuryakh Anticlinorium (the lower part of the Permian Khivachian Horizon of the RSS of northeastern Russia) allowed us to obtain the important reference level for the Upper Permian subdivision of the Permian RSS. The zircon age of 257.1 ± 3.0 Ma is in good agreement with the stratigraphic position of the studied sample, which makes it possible to correlate the surrounding deposits with the Wuchiapingian Stage of the Permian deposits in the International Stratigraphic Scale.  相似文献   

5.
Borehole 2506 drilled in the northern area of the Arkhangelsk Oblast penetrated through the Paleozoic sedimentary block isolated in the Vendian thick sequence. A diverse acritarch assemblage has been established within the depth interval of 119.9–217.5 m. The assemblage comprises more than 70 taxa, including species characteristic of the boundary interval between the Volkhov and Kunda horizons of the East European Platform (the graptolite Didymograptus hirundo Zone). Stratigraphic position of host deposits was established within the Darriwilian Stage of the Middle Ordovician. The described assemblage of microphytofossils is similar to coeval assemblages from NW Russia, Baltic region, and Scandinavia, being typical of the Baltic phytoplankton province of temperate latitudes. A great number of species in common suggests that the assemblage under consideration is correlative with coeval assemblages of southern China thus offering a possibility of remote correlation.  相似文献   

6.
The problems of the intra- and regional correlation of Permian sections of Northeastern Asia are considered based on a new zonal biostratigraphic bivalve scale. The interregional correlation was performed for the Permian deposits in the eastern part of the Boreal Superrealm and some adjacent regions. The possibilities and problems of bivalve-based correlation of Permian sediments in extraboreal regions are discussed.  相似文献   

7.
Review of the Permian Camptoneuritidae (Insecta:Grylloblattida)   总被引:1,自引:1,他引:0  
<正>The Permian family Camptoneuritidae(Insecta:Grylloblattida)is reviewed.New synonymies are proposed:Camptoneuritidae Martynov,1930=Demopteridae Carpenter,1950,syn.nov.,=Jabloniidae Kukalova, 1964,syn.nov.Key to genera of Camptoneuritidae is given.All genera are redescribed and illustrated. Camptoneurites soyanensis sp.nov.from Soyana locality(Middle Permian,Kazanian Stage;Arkhangelsk Region, Russia)and Tyulkinia bashkuevi gen.et sp.nov.from Tyulkino locality(Lower Permian,Kungurian Stage;Perm Region,Russia)are described.  相似文献   

8.
俄罗斯地质学家在近20年来以岩石圈板块构造理论和地体分析方法,对中-东西伯利亚和俄罗斯远东地区构造和区域成矿作用的研究取得了一系列重要进展。这些进展集中体现在2个多国合作项目取得的成果和2部最新的科学专著中。作者重点介绍了中-东西伯利亚和俄罗斯远东地区区域构造演化、区域构造和区域成矿单元及一些重要金属矿床的基本特征,并对本区地质演化的某些重要问题(转换陆缘、蒙古-鄂霍茨克造山带等)做了讨论,以此向读者提供一个有关俄罗斯东部地区上述领域基本研究现状的梗概。  相似文献   

9.
A global review of the stratigraphical and geographical distribution of Tyloplecta reveals that the genus ranges in age from Kungurian to Changhsingian (Middle to Late Permian). Tyloplecta first evolved in South China in the Kungurian (late Early Permian). The genus went through its first diversification in the Guadalupian, suffered a major extinction at the end of the Guadalupian, and re-diversified in the Wuchiapingian. T. yangtzeensis persisted into the Changhsingian as the only survivor of the genus involved in the end-Permian mass extinction. Palaeogeographically, South China is not only the centre of origin for the genus but also an area of diversification and evolution. In addition to South China, Tyloplecta has also been recorded from the Far East Russia, Japan, central Thailand, Laos, Cambodia, Qiangtang Terrane of Tibet, Salt Range, Iran, Armenia, Hungary, Yugoslavia, and Slovenia. This geographic spread suggests that Tyloplecta was primarily restricted to the Palaeotethys and is indicative of warm-water palaeoequatorial conditions. Its presence in some of the northeast Asian terranes (e.g., parts of Japan and Far East Russia) and in the Salt Range (Pakistan) and central and north Iran (part of the Cimmerian microcontinents) demonstrate that the genus invaded the middle palaeolatitudinal regions in both hemispheres during the late Middle Permian in response to increased shallow marine biotic communications between Cathaysia in the eastern Palaeotethys and southern Angaraland, and between Cathaysia and Peri-Gondwanaland. The invasion of Tyloplecta (and some other taxa) into the southern shore waters of Angaraland may be explained by assuming ocean surface current connections and close palaeogeographical proximities between the South China, Sino-Korea and Bureya blocks. In comparison, the invasion of Tyloplecta into the Peri-Gondwanaland region is more likely a result of reduced palaeogeographical distance between South China and Peri-Gondwanaland and the appearance of the Cimmerian microcontinents as migratory stepping stones.  相似文献   

10.
俄罗斯东部地区油气资源远景分析   总被引:1,自引:0,他引:1  
俄罗斯东部地区油气资源十分丰富,而且远景储量巨大。其石油储量远景区主要圈定在东西伯利亚地区晚元古代-早古生代陆源碎屑岩-碳酸盐岩含油气盆地,远东地区中-新生代大陆架硅质岩含油气盆地和远东滨海坳陷中古新世-始新世杂砂岩含油气建造等。而且,远东地区含油气盆地的形成时代自西向东逐渐变年轻,具体由侏罗纪、白垩纪过渡为新生代。俄罗斯东部地区中-新生代煤层气盆地广布,其中最主要的煤层气盆地为勒拿河流域盆地和南雅库特盆地。煤层气的成因及分布特征主要受控于盆地的基本地质特征,即上覆、下伏地层层系和褶皱断裂构造、变质作用等。俄罗斯远东地区萨哈林大陆架、鄂霍茨克海以及白令海阿列乌特深水海盆中蕴藏大量的天然气水合物资源。天然气水合物中的甲烷一般被认为来自深部油气层,但也有专家认为它可能来自大陆架以外的深海海域。  相似文献   

11.
Defining the Jurassic-Cretaceous boundary is a controversy in stratigraphic study of the world. It has been widely accepted that this boundary can be defined at the bottom of Berriasian in Tethys, with the appearance of the ammonite Berriasella jacobi dating to ca. 145 Ma. However, it is difficult for the widespread terrestrial deposits in China to correlate with the international standard of marine facies. The Somanakamura Group in Japan is represented by a succession of marine-continental transitional strata. It provides a bridge of marine and nonmarine stratigraphic correlation. The ammonite and radiolarian fossils preserved in this group suggest an age from Bajocian to early Valanginian. The J-K boundary was defined in or atop the Tomizawa Formation of the group according to the ammonite data. The present authors study the fossil spores and pollen newly found from the Tomizawa and Koyamada formations. Three assemblages have been recognized. They are Assemblage 1 (Cyathidites-Classopollis) from the upper part of the Tomizawa Formation, Assemblage 2 (Cyathidites-Jiaohepollis) from the lower part of the Koyamada Formation, and Assemblage 3 (Cyathidites-Spheripollenites-Ephedripites) from the middle to upper part of the Koyamada Formation. With the reference of ammonite evidence, the J-K boundary can be defined between Assemblage 1 and Assemblage 2. This palynological J-K boundary can be correlated with that of terrestrial sequence in China. However, local biostratigraphy imply that the continental J-K boundary in China is of 135 or 137 Ma age. It has a considerable discrepancy from the marine standard. Biogeographically, the distribution pattern of spores and pollen in southern China is in accordance with that in the Somanakamura Group, which parallels the Tuchengzi Formation in northeastern China. By the palynological correlation between the Somanakamura Group and the strata in southern China, and then with the sequence in northeastern China, it is suggested that the continental J-K boundary is located in the Tuchengzi Formation.  相似文献   

12.
对滇西保山地块、泰国西部和南部及澳大利亚悉尼盆地的冈瓦纳相二叠纪地层进行了对比。前两者的二叠纪地层岩性和所含生物群面貌基本可以对比 ,皆反映出由冈瓦纳相向特提斯相的转变 ,后者是典型的冈瓦纳相 ,仅早二叠世地层的岩性和所含化石与前两者相似。  相似文献   

13.
二叠系全球界线层型和点位(GSSP)研究进展   总被引:4,自引:1,他引:4  
新的二叠纪年代地层系统为国际二叠系分会通过并正式纳入“国际地层表”后,已有5个GSSP得到正式批准,它们分别是阿瑟尔阶(二叠系)、吴家坪阶、卡匹敦阶、沃德阶和罗德阶的底界。长兴阶底界的GSSP提案在国际二叠系分会投票中,以94 %赞成票通过,并交国际地层委员会进行投票表决。国际二叠系分会最近的主要工作重点将是早二叠世乌拉尔统内空谷阶底界、亚丁斯克阶底界和萨克马尔阶底界的确定工作,由B.I.Chuvashov领导的界线工作组正在对俄罗斯乌拉尔南部的界线剖面进行工作。国际二叠系分会力争在2 0 0 6年底前完成投票工作,并使二叠纪的地层研究全面转入国际间对比等层型后研究  相似文献   

14.
A succession of seven palynological assemblages characterizing the Yuzhnyi Timan, Taman, Ust-Yarega, Domanik, and Vetlosyan formations of the southern Timan is established in the Givetian-Frasnian deposits recovered by Borehole 1-Balneologicheskaya and studied in detail. Five individual zones, which are distinguished within stratigraphic range of the optivus-krestovnicovii miospore zone, can be of basic importance for a high-resolution stratigraphic subdivision of the sedimentation stage under consideration. Phytostratigraphic boundary corresponding to the Frasnian Stage base in the East European platform is substantiated in palynological aspect.  相似文献   

15.
Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and evolution, i.e., the distribution area contraction prior to complete extinction at the end of the Triassic  相似文献   

16.
分布于东昆仑南缘的早三叠世洪水川组系一套由砾岩、砂岩、页岩和鲕粒灰岩等浅海相和河流相沉积物构成的弧前盆地沉积组合.砂岩碎屑组成、重矿物组合、岩石地球化学和古水流综合研究结果表明,洪水川组砂岩物源主要来自于北侧的岛弧带,同时南侧的阿尼玛卿蛇绿混杂带也为其形成提供了部分物源;源区主要出露长英质岩石、变质岩和硅质岩.  相似文献   

17.
Comparative analysis of taxonomic diversity dynamics of condontophorids from Boreal (Arctic regions of Russia) and Tethyan (Northwest Pacific) paleobasins showed that they had most favorable habitat environments in tropical seas. In the Boreal realm, condontophorids went through three stages of evolution comprising probably four substages and four phases, whereas three stages with six substages and twelve phases are distinguished in the Tethyan realm. The most important abiotic factors that controlled development of conodontophorids are paleotemperature of seawater and paleogeographic settings. Renewals in taxonomic composition conodontophorids and diversification of their assemblages have been confined to moments of paleotemperature and/or sea level rise. The comparative analysis of stages in evolution of conodontophorid and bivalve assemblages has been carried out. As is established, the peak taxonomic diversity of bivalves in Boreal seas was in the Late Triassic after the diversity minimum of the Early Triassic time. In contrast, conodontophorids were most diverse in the Olenekian Age.  相似文献   

18.
New micropaleontological and paleomagnetic data were obtained by studying core samples of Cenozoic continental deposits from two boreholes drilled in the south of Tyumen oblast (Western Siberia). Palynological assemblages in deposits of the Tavda (upper part), Novomikhailovka, Turtas, Abrosimovka, Tobolsk, Smirnovka, and Suzgun formations were described. Deposits of these formations are enriched in spore-pollen assemblages, which can be correlated with assemblages of regional palynozones of the West Siberian Plain. Ostracods were described in Quaternary deposits. On the basis of biostratigraphic and paleomagnetic data, the Late Eocene (Priabonian)–Holocene age of deposits was substantiated. For the first time, beds with dinocysts of genus Pseudokomewuia were identified in deposits of the Turtas Formation (Upper Oligocene) of the Ishim lithofacial area. In total, nine regional magnetozones were distinguished in the paleomagnetic section. On the basis of palynological and paleomagnetic data, sections of two boreholes were correlated, and hiatuses in sedimentation were revealed. A large hiatus is at the Eocene-Oligocene boundary (Western Siberia): the Lower Oligocene Atlym Horizon and Miocene–Pliocene and Eopleistocene sediments are missing. The Oligocene interval of the section is represented in a reduced volume.  相似文献   

19.
通过对松辽盆地北部晚白垩世青山口组和嫩江组一段、二段中沟鞭藻及疑源类化石形态、丰度、分异度、优势度和组合等古生态特征研究 ,以及对微量元素硼含量、相当硼含量、锶钡比和硼镓比等地球化学特性的分析 ,得出在盆地北部沟鞭藻及疑源类化石的古生态、微量元素的分布规律与盆地内沉积相带的展布三者之间具有较好的相关性 ,说明松辽盆地的沟鞭藻及疑源类的发育和分布是由自生环境决定的。同时 ,通过专门对所谓“海侵”通道上的微体古生物和微量元素特征进行综合分析 ,未发现任何能证明海侵通道存在的证据 ,从而认为此海侵通道并不存在。  相似文献   

20.
Distribution of ammonites in the Bajocian-Bathonian boundary beds of the Izhma River basin is considered. A new scheme of zonal subdivisions suggested for the Pechora basin includes the Arctocephalites arcticus Zone of the upper Bajocian and the Arctocephalites greenlandicus-Arcticoceras ishmae Zone of the lower Bathonian. The Dreshchanka Formation age (late Bajocian-early Bathonian) and the commencement time of the Boreal sea transgression (Late Bajocian) are specified. Correlation of the Bajocian-Bathonian boundary strata of the northern Caucasus, central and northern Russia with stratigraphic scales of Western Europe and East Greenland are discussed. New infrazonal subdivisions, i.e., the faunal horizons, are described. As is shown, the parkinsoni-zigzag zonal boundary accepted to be the Bajocian-Bathonian boundary in standard scale corresponds to boundaries separating the michalskii and besnosovi zones in the Lower Volga region and the arcticus and greenlandicus zones in the Boreal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号