共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
组合预测模型在基坑变形监测中的应用 总被引:1,自引:1,他引:1
现今常见的变形监测数据处理方法有GM(1,1)模型、BP神经网络模型和径向基神经网络模型(RBF),本文分别采用GM(1,1)模型和RBF网络模型对基坑结构的水平位移量进行预测,并且采用基于方差倒数法的组合模型对上述两种单一模型预测值进行组合,以达到改善预测精度的效果。实验结果表明,组合模型的预测精度和可靠性优于单一模型,说明了该模型的可行性。 相似文献
3.
危来龙 《测绘与空间地理信息》2013,(10):241-244
为解决地铁施工段地表沉降随机波动较大对预测模型造成扰动的问题,提出了一种组合预测模型。首先利用Mallat算法对沉降序列进行分解和重构,分解并重构出非平稳时间序列中的平滑分量和细节分量;然后,对平滑分量用灰色模型进行拟合与初步预测,对细节分量则引入马尔可夫模型进行预测;最后,将各模型的预测结果进行叠加,从而得到原始沉降序列的预测值。该方法能充分拟合平滑分量数据,而且可避免对细节分量的过拟合,防止随机波动较大值造成模型的整体偏离。通过实例验算得出该模型具有很好的预测精度。 相似文献
4.
5.
为了提高单一的BP(Back Propagation)神经网络模型在建筑物基坑沉降数据预测中的精度,本文将奇异谱分析(SSA,Singular Spectrum Analysis)与卡尔曼滤波(KF, Kalman Filter)引入预测模型中,构建基于SSA的KF-BP神经网络预测模型。该组合预测模型首先利用SSA将原始时间序列中的趋势项与周期项提取出来;其次通过KF-BP神经网络模型分别对趋势项与周期项进行预测;最后重构趋势项预测结果与周期项预测结果,得到最终预测结果。将本文提出的基于SSA的组合预测模型应用于建筑物基坑沉降监测数据预测中,结果表明,本文提出的预测模型较BP神经网络模型、KF-BP神经网络模型的整体预测精度更高,预测结果更加稳定。 相似文献
6.
为了对建筑物基坑沉降进行准确预报,在传统的时间序列预测模型的基础上,提出了一种基于经验模态分解(EMD)方法的差分灰色神经网络-AR模型。该模型充分结合EMD方法在信号自适应分解中的优势,通过EMD方法将监测数据分为不同频段的分量,使用差分灰色神经网络模型对序列更为稳定的低频分量进行预测,消除了由于灰色预测模型预测残差不稳定导致预测结果精度较低的问题;使用AR时间序列模型对稳定性较低的高频分量进行预测,重构由不同模型预测得到的结果,得到最终预测结果。将灰色GM(1.1)模型、差分灰色神经网络模型与本文提出的组合模型应用于某在建建筑物基坑沉降预测中,试验结果表明相比于灰色GM(1.1)模型与差分灰色神经网络模型,本文提出的组合模型预测精度更高,可以有效预报建筑物基坑沉降,在实际工程中有较高的推广价值。 相似文献
7.
8.
为了准确掌握矿山开采面上部地表的沉降变化规律,预测沉降发展趋势,提出一种双曲线法与三点法的组合预测模型进行矿区沉降预测的方法。结合矿山沉降观测实例,采用单一的双曲线法、三点法以及两者的组合预测方法对沉降数据进行预测分析,对比其预测精度。结果表明,组合预测模型能够满足矿区沉降预测的精度要求,且预测精度优于单一预测方法。 相似文献
9.
本文针对地铁施工中,附近管线及建(构)筑物所产生的变形,结合上海地铁7号盾构施工监测,提出在地铁施工的同时,进行精密变形监测的有关技术和实现的技术方法,并在实际中取得了理想的结果。 相似文献
10.
11.
12.
13.
14.
15.
为提高变形预测的精度,采用GM(1,1)与BP神经网络组合模型进行预测。灰色GM(1,1)模型使用方便,在样本数据较少的情况下能够取得不错的预测效果,但对预测序列存在规律性波动或突变时的预测能力不强;而神经网络模型建模过程相对复杂,需要较多的训练样本,但对于数据存在规律性波动和突变时有很好的预测能力。组合模型融合两者优点,将其应用于基坑沉降数据预测,结果表明,该模型预测精度优于传统的单一预测模型。 相似文献
16.
17.
18.
19.
随着城市发展,致使地铁沉降的因素越来越多,地铁沉降监测越来越重要。对此,本文基于灰色模型和RBF神经网络预测模型,对两者融合方法进行了研究。通过对某城市地铁沉降监测数据进行预报和分析,证明了灰色RBF神经网络模型预测精度优于单一模型预测精度,组合模型避免了灰色模型线性补偿的弊端、增加了数据利用率、增强了算法的鲁棒性,预报结果更加准确。 相似文献
20.
地铁运营过程中,隧道结构突发变形、渗漏、裂痕等事故,针对事故建立应急监测系统,对地铁运营安全有非常重要的意义。哈尔滨市勘察测绘研究院通过哈尔滨地铁1号线哈工大站台结构渗漏事故案例,详细介绍了应急监测系统建立、监测仪器设备的选择、监测方法及数据分析等。基于应急监测要保证数据实时传输、反应速度快等特点,采用全自动监测方法,通过5个月的实地监测,为保证地铁安全运行提供了有力的数据支持,证明了此方法适用于地铁应急监测。 相似文献