首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
We present reflectance spectra of 19 V-type asteroids obtained at the 3.6 m Telescopio Nazionale Galileo covering 0.8 to 2.5 μm. For 8 of these asteroids we obtained also visible spectra in the same observational run. The range from 0.8 to 2.5 μm, encompassing the 1 and 2 μm pyroxene features, allows a precise mineralogical characterization of these asteroids. The obtained data suggests the possible coexistence of distinct mineralogical groups among the V-type asteroids, either probing different layers of (4) Vesta or coming from different bodies. No clear correlation was found between mineralogies and the objects being, or not, member of the Vesta dynamical family.  相似文献   

2.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

3.
We present the observational results of a survey designed to target and detect asteroids whose photometric colors are similar to those of Vesta family members and thus may be considered as candidates for having a basaltic composition. Fifty basaltic candidates were selected with orbital elements that lie outside of the Vesta dynamical family. Optical and near-infrared spectra were used to assign a taxonomic type to 11 of the 50 candidates. Ten of these were spectroscopically confirmed as V-type asteroids, suggesting that most of the candidates are basaltic and can be used to constrain the distribution of basaltic material in the Main Belt. Using our catalog of V-type candidates and the success rate of the survey, we calculate unbiased size-frequency and semi-major axis distributions of V-type asteroids. These distributions, in addition to an estimate for the total mass of basaltic material, suggest that Vesta was the predominant contributor to the basaltic asteroid inventory of the Main Belt, however scattered planetesimals from the inner Solar System (a<2.0 AU) and other partially/fully differentiated bodies likely contributed to this inventory. In particular, we infer the presence of basaltic fragments in the vicinity of Asteroid 15 Eunomia, which may be derived from a differentiated parent body in the middle Main Belt (2.5<a<2.8). We find no asteroidal evidence for a large number of previously undiscovered basaltic asteroids, which agrees with previous theories suggesting that basaltic fragments from the ∼100 differentiated parent bodies represented in meteorite collections have been “battered to bits” [Burbine, T.H., Meibom, A., Binzel, R.P., 1996. Meteorit. Planet. Sci. 31, 607-620].  相似文献   

4.
Anita L Cochran  Faith Vilas 《Icarus》2004,167(2):360-368
We present spectral observations of Minor Planet 4 Vesta, of five V-type asteroids which are physically near Vesta, and of two V-type NEAs. We use these spectra to determine the presence or absence of a weak feature at 506.5 nm which is indicative of the presence of spin-forbidden Fe2+ in sixfold coordination. As with our earlier observations [Cochran and Vilas, Icarus 134 (1998) 207-212], we find this feature at all observed rotational phases of Vesta and again see the trend that spectra at longitudes between 240° and 360° have a smaller 506.5 nm feature equivalent width than spectra obtained at other longitudes. Additionally, we searched for this feature in V-class main-belt and NEA asteroids and positively detected the feature in main-belt Asteroid 2579 Spartacus and possibly in 3376 Armandhammer. The other objects lacked the feature. Our results are compared with previous observations of this feature by Vilas et al. [Icarus 147 (2000) 119-128]. The spatial distribution of the bodies as a function of the presence of this feature was investigated. We discuss the implication of the presence of this feature and the depth of the 0.9 μm pyroxene band for the scenario that pieces of Vesta were transported, via the 3:1 and ν6 resonances, to the NEAs, and thence to inclusion in our meteorite collections as HED meteorites.  相似文献   

5.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

6.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

7.
Abstract— Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta‐like spectral properties (Vestoids) were measured at visible and near‐infrared wavelengths (~0.44 to ~1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled “non‐family” members that reside just outside the semi‐major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a‐e‐i) match of these “non‐family” objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut‐off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine‐rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best‐known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine‐grained eucritic material on their surfaces.  相似文献   

8.
Abstract— A large body of evidence, including the presence of a dynamical family associated with 4 Vesta, suggests that this asteroid might be the ultimate source of both the V-type near-Earth asteroids (NEAs) and howardite, eucrite and diogenite (HED) meteorites. Dynamical routes from Vesta to the inner regions of the solar system are provided by both the 3:1 mean-motion resonance with Jupiter and the V6, secular resonance. For this reason, numerical integrations of the orbits of fictitious Vesta fragments injected in both of these resonances have been performed. At the same time, the orbital evolution of the known V-type NEAs has been investigated. The results indicate that the dynamical half lifetimes of Vesta fragments injected in both the 3:1 and the V6, resonances are rather short ('2 Ma). The present location of the seven known V-type NEAs is better explained by orbital evolutions starting from the v6 secular resonance. The most important result of the present investigation, however, is that we now face what we call the “Vesta paradox.” Roughly speaking, the paradox consists of the fact that the present V-type NEAs appear to be too dynamically young to have originated in the event that produced the family, but they are too big to be plausible second-generation fragments from the family members. The cosmic-ray exposure (CRE) age distribution of HED meteorites also raises a puzzle, since we would expect an overabundance of meteorites with short CRE ages. We propose different scenarios to explain these paradoxes.  相似文献   

9.
F. Roig  R. Gil-Hutton 《Icarus》2006,183(2):411-419
We present a systematic method to identify possible basaltic (V-type) asteroids using the Moving Objects Catalog (MOC) of the SDSS. The method is based on the Principal Components Analysis of the MOC colors combined with some refined criteria of segregation of the taxonomic classes. We found several V-type candidates outside the Vesta family, most of them in the inner asteroid belt. We also identified a few candidates in the middle/outer belt. Notwithstanding, their basaltic nature still needs to be conformed by spectroscopy, and these candidates are potential targets for observation using large telescopes.  相似文献   

10.
The correlation between specific meteorites and asteroids is a long-standing problem. The best-known correlation seems to be the HED–Vesta, although several problems still remain to be solved. We report the spectral reflectance analysis (0.4–2.5 μm) of a set of HED meteorites, taken from the RELAB database and three V-type asteroids, taken from MIT-UH-IRTF Joint Campaign for NEO Reconnaissance. We used the Modified Gaussian Model to fit the spectra to a series of overlapping, modified Gaussian absorptions. The fitted individual bands are validated against established laboratory calibrations. With spectral resolution extending to the near-infrared, we are able to resolve the presence of both high-calcium pyroxene (HCP) and low-calcium pyroxene (LCP) and, thus, use the HCP/(HCP + LCP) ratios to remotely trace igneous processing on the parent asteroids. A search of this mineral provides a useful probe of differentiation. The high HCP/(HCP + LCP) ratios found require extensive differentiation of these asteroids and/or their primordial parent body. The degree of melting obtained for the eucrites, using the former ratio, is comparable with that obtained for all V-type asteroids here analyzed, suggesting a comparable geologic history.  相似文献   

11.
Abstract— The compelling petrographic link (Consolmagno and Drake, 1977; Gaffey, 1983) between basaltic achondrite meteorites and the ~530 km diameter asteroid 4 Vesta has been tempered by a perceived difficulty in launching rocks from this asteroid's surface at speeds sufficient to bring them to Earth (Wasson and Wetherill, 1979) without obliterating Vesta's signature crust. I address this impasse in response to recent imaging (Zellner et al, 1996; Dumas and Hainaut, 1996) of a ~450 km impact basin across Vesta's southern hemisphere (Thomas et al., 1997) and model the basin-forming collision using a detailed two-dimensional hydrocode with brittle fracture including self-gravitational compression (cf., Asphaug and Melosh, 1993). A ~42 km diameter asteroid striking Vesta's basaltic crust (atop a denser mantle and iron core) at 5.4 km/s launches multikilometer fragments up to ~600 m/s without inverting distal stratigraphy, according to the code. This modeling, together with collisional, dynamical, rheological and exposure-age timescales (Marzari et al., 1996; Welten et al., 1996), and observations of V-type asteroids (Binzel and Xu, 1993) suggests a recent (<~1 Ga) impact origin for the Vesta family and a possible Vesta origin for Earth-approaching V-type asteroids (Cruik-shank et al., 1991).  相似文献   

12.
Bottke et al. [Bottke, W.F., Vokrouhlicky, D., Nesvorný, D., 2007. Nature 449, 48–53] linked the catastrophic formation of Baptistina Asteroid Family (BAF) to the K/T impact event. This linkage was based on dynamical and compositional evidence, which suggested the impactor had a composition similar to CM2 carbonaceous chondrites. However, our recent study [Reddy, V., Emery, J.P., Gaffey, M.J., Bottke, W.F., Cramer, A., Kelley, M.S., 2009. Meteorit. Planet. Sci. 44, 1917–1927] suggests that the composition of (298) Baptistina is similar to LL-type ordinary chondrites rather than CM2 carbonaceous chondrites. This rules out any possibility of it being related to the source of the K/T impactor, if the impactor was of CM-type composition. Mineralogical study of asteroids in the vicinity of BAF has revealed a plethora of compositional types suggesting a complex formation and evolution environment. A detailed compositional analysis of 16 asteroids suggests several distinct surface assemblages including ordinary chondrites (Gaffey SIV subtype), primitive achondrites (Gaffey SIII subtype), basaltic achondrites (Gaffey SVII subtype and V-type), and a carbonaceous chondrite. Based on our mineralogical analysis we conclude that (298) Baptistina is similar to ordinary chondrites (LL-type) based on olivine and pyroxene mineralogy and moderate albedo. S-type and V-type in and around the vicinity of BAF we characterized show mineralogical affinity to (8) Flora and (4) Vesta and could be part of their families. Smaller BAF asteroids with lower SNR spectra showing only a ‘single’ band are compositionally similar to (298) Baptistina and L/LL chondrites. It is unclear at this point why the silicate absorption bands in spectra of asteroids with formal family definition seem suppressed relative to background population, despite having similar mineralogy.  相似文献   

13.
Spectroscopic observations of Asteroid (4) Vesta and numerous members of the Vesta family located in the inner asteroid belt have determined that these objects have reflectance properties of basaltic material. A plausible hypothesis is that the surface of Vesta was punctured by large impacts in the past which dispersed fragments of its basaltic crust into space and produced one of the most prominent asteroid families ever created in the belt. Until recently, Vesta was the only known object in the asteroid belt which underwent differentiation and survived to the present epoch. Since 2000, many new small basaltic asteroids have been discovered in the inner and outer parts of the asteroid belt, possibly representing fragments from distinct differentiated bodies. These discoveries may help us to better understand the number and nature of objects in the inner Solar System that underwent geological differentiation. To investigate these issues we performed extensive numerical simulations whose aim was to reproduce, as precisely as possible, the dynamical evolution of Vesta's ejected fragments over timescales comparable to the family's age. Specifically, we numerically integrated the orbital evolution of 6600 test bodies with orbits that started within the Vesta family and dynamically evolved over 2 Gy. Our model included gravitational perturbation of all planets (except Mercury) and the Yarkovsky effect. The results show that a relatively large fraction of the original Vesta family members may have evolved out of the family borders defined by clustering algorithms and are now dispersed over the inner asteroid belt. We compared the orbital distribution of our model fragments with the orbital locations of known basaltic asteroids in various parts of the inner main belt to find that: (i) Most basaltic asteroids with semimajor axis located outside the Vesta family's borders in the inner main belt, including (809) Lundia and (956) Elisa, are most likely fugitives from the Vesta family that have evolved to their current orbits via various identified dynamical pathways. Our results also suggest that the Vesta family is at least ∼1 Gy old. (ii) Interestingly, orbits of many basaltic asteroids with , like those of (4796) Lewis and (5379) Abehiroshi, are displaced from the Vesta family to low inclinations and are not obtained in our simulations with sufficient efficiency. We propose that: (i) these small basaltic asteroids may be fragments of differentiated bodies other than (4) Vesta; or (ii) they were liberated from the Vesta's surface before (or during) the Late Heavy Bombardment epoch ∼3.8 Gy ago and their orbital inclinations separated from that of Vesta when secular resonances swept through the region.  相似文献   

14.
15.
16.
We discuss possible mechanisms for the formation of albedo spots on asteroids. We infer that the most likely mechanisms are impact cratering and related processes. This is confirmed by the reflectance spectra of the asteroids 10 Hygiea, 135 Hertha, and 196 Philomela, the results of a spectral frequency analysis of the sizes of features on the surface of 4 Vesta and 21 Lutetia, and the estimates for the parameters of impact features.  相似文献   

17.
Asteroid 21 Lutetia is one of the objects of the Rosetta mission carried out by the European Space Agency (ESA). The Rosetta spacecraft launched in 2004 is to approach Lutetia in July 2010, and then it will be directed to the comet Churyumov-Gerasimenko. Asteroid 4 Vesta is planned to be investigated in 2011 from the Dawn spacecraft launched by the National Aeronautics and Space Administration (NASA) in 2007 (its second object is the largest asteroid, 1 Ceres). The observed characteristics of Lutetia and Vesta are different and even contradictory. In spite of the intense and versatile ground-based studies, the origin and evolution of these minor planets remain obscure or not completely clear. The types of Lutetia and Vesta (M and V, respectively) determined from their spectra correspond to the high-temperature mineralogy, which agrees with their albedo estimated from the Infrared Astronomical Satellite (IRAS) observations. However, according to the opinion of some researchers, Lutetia is of the C type, and, therefore, its mineralogy is of the lowtemperature type. In turn, hydrosilicate formations have been found in some places on the surface of Vesta. Our observations also testify that at some relative phases of rotation (RP), the reflectance spectra of Lutetia and Vesta demonstrate features confirming the presence of hydrosilicates in the surface material. However, this fact can be reconciled with the magmatic nature of Lutetia and Vesta if the hydrated material was delivered to their surfaces by falling primitive bodies. Such small bodies are probably present everywhere in the main asteroid belt and can be the relicts of silicate-icy planetesimals from Jupiter’s formation zone or the fragments of primitive-type asteroids. When interpreting the reflectance spectra of Lutetia and Vesta, we discuss the spectral classification by Tholen (1984) from the standpoint of its general importance for the estimation of the mineralogical type of the asteroids and the study of their origin and evolution.  相似文献   

18.
Abstract— Our analyses of high quality spectra of several S‐type asteroids (17 Thetis, 847 Agnia, 808 Merxia, and members of the Agnia and Merxia families) reveal that they include both low‐ and high‐calcium pyroxene with minor amounts of olivine (<20%). In addition, we find that these asteroids have ratios of high‐calcium pyroxene to total pyroxene of >~0.4. High‐calcium pyroxene is a spectrally detectable and petrologically important indicator of igneous history and may prove critical in future studies aimed at understanding the history of asteroidal bodies. The silicate mineralogy inferred for Thetis and the Merxia and Agnia family members requires that these asteroids experienced igneous differentiation, producing broadly basaltic surface lithologies. Together with 4 Vesta (and its smaller “Vestoid” family members) and the main‐belt asteroid 1489 Magnya, these new asteroids provide strong evidence for igneous differentiation of at least five asteroid parent bodies. Based on this analysis of a small subset of the near‐infrared asteroid spectra taken to date with SpeX at the NASA IRTF, we expect that the number of known differentiated asteroids will increase, consistent with the large number of parent bodies inferred from studies of iron meteorites.  相似文献   

19.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

20.
In the present paper we seek to understand the geologic diversity of units in the northern hemisphere of Vesta using HST observations (Binzel et al., 1997). First, we compare colors R(0.673 μm)/R(0.953 μm) and R(0.673 μm)/R(1.042 μm) of Vesta’s units with those of V-type asteroids (vestoids) as well as howardite, eucrite, and diogenite meteorites (HEDs). This comparative analysis showed that: (i) on the color-color plot, regions on Vesta are clustered whereas vestoids and HEDs cover a wide range in color; (ii) very few vestoids or HEDs fall into Vesta’s color region. This implies that Vesta’s units are more homogenous than most vestoids and HEDs examined here and material of the units are slightly different from that of vestoids and HEDs. Assuming reasonable choice of end-member materials, an optical model (Shkuratov et al., 1999) was used to simulate intimate mixtures of particles at the surface of Vesta’s units. Simulation of albedo, colors, and four-point spectra of Vesta’s units reveals that the rock-forming material is nearly equal for all units and has HED-like composition. Diversity of the units depends on the minor constituents such as chromite and a neutral phase. The western units contain more chromite and neutral phase than the eastern, consequently albedo of the western units is lower and their four-point spectra are flatter. Olivine and feldspar are also needed to give the best fit for the calculated and observed albedos and colors of Vesta’s units, but being in minor amount in Vesta’s rocks they play a secondary role in contributing to the optical properties of the units. Questions about the proportions of HED-like rock and the constituent called neutral phase remain open. Spectrophotometric studies of Vesta with both higher spatial and spectral resolution as expected from NASA’s Dawn mission are needed for resolving these problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号