首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of the disk-integrated solar phase curve of 433 Eros, as derived from ground-based telescopic and NEAR Shoemaker spacecraft measurements, shows that Eros's surface properties are typical of average S-type asteroids. Eros displays the same single-particle scattering characteristics and porosity vs theoretical grain size relationships as typical S-asteroids, as does Ida. Eros's single-scattering albedo, however, is higher. The geometric albedo at 550 nm derived for Eros (0.29±0.02) is higher than Ida's but is equivalent to Gaspra's within the error bars. The phase integral (0.39±0.02) and Bond albedo (0.12±0.02) for Eros are higher than those estimated for average S-type asteroids but commensurate with the values obtained for Gaspra.  相似文献   

2.
The NEAR laser rangefinder (NLR) obtained more than 16 million range returns from asteroid 433 Eros. We present the first results from analyses of topographic profiles interpreted with the aid of simultaneous, boresighted images obtained by the NEAR multispectral imager (MSI). The location of the NLR boresight relative to that of MSI is determined by detailed correlations of ranging data and simultaneous images, including cases where the laser boresight slewed off and on the limb of the asteroid and cases where the laser illuminated a boulder close to the time of an image. In the data presented, the precision of the range measurements is about 1 m, with the minimum spot diameter under 5 m, and successive spots are contiguous or overlapping. Elevation on the irregular object Eros is given with respect to the gravitational and centrifugal potential. Landslides in craters are characterized. Possible crater benches are identified. Examples of infilled craters are presented. These observations suggest a depth of unconsolidated regolith, which is subject to sliding, of typically a few tens of meters. An example of structurally controlled cratering is presented. Examples of tectonic features are described. Surface roughness on Eros is approximately self-affine from scales of a few meters to hundreds of meters. A comparison of fractal statistics shows that Eros is extremely rough on observed scales, when compared to terrestrial a'a lava on submeter scales and undisturbed lunar regolith on subcentimeter scales.  相似文献   

3.
We measured the light-curve of the asteroid (147) Protogeneia in November 2004, with a CCD detector attached to the 1-meter telescope at the Yunnan Observatory, China. The synodic period and maximum amplitude of (147) at this apparition are 7.852 hours and 0.25 mag, respectively. The value of a/b for (147), from a preliminary estimation, is not less than 1.26:1.  相似文献   

4.
There are ∼300 features on the Asteroid 433 Eros that morphologically resemble ponds (flat-floored and sharply embaying the bounding depression in which they sit). Because boulders on Eros are apparently eroding in place and because ponds with associated boulders tend to be larger than ponds without blocks, we propose that ponds form from thermally disaggregated and seismically flattened boulder material, under the assumption that repeated day/night cycling causes material fatigue that leads to erosion of the boulders. Results from a simple boulder emplacement/thermal erosion model with boulders emplaced in a few discrete events (i.e., large impacts) match well the observed size distribution. Under this scenario, the subtle color differences of ponds (somewhat bluer than the rest of the surface) might be due to some combination of less space-weathered material and density stratification of silicate-rich chondrules and more metal-rich matrix from a disaggregated boulder. Volume estimates of ponds derived from NEAR Laser Rangefinder profiles are consistent with what can be supplied by boulders. Ponds are also observed to be concentrated in regions of low slope and high elevation, which suggests the presence of a less mobile regolith and thus a contrast in the resistance to seismic shaking between the pond material and the material that makes up the bounding depression. Future tests include shake-table experiments and temperature cycling (fatigue) of ordinary chondrites to test the thermal erosion mechanism.  相似文献   

5.
The magnetometer investigation aboard the NEAR-Shoemaker spacecraft has obtained extensive magnetic field observations throughout the 433 Eros environment, from distances in excess of 100,000 km to those conducted after landing on 12 February 2001. We report the apparent absence of global scale magnetization at this asteroid (H<0.005 A·m−1; natural remanent magnetization per kilogram <1.9×10−6 A·m2 ·kg−1), orders of magnitude less than the intense magnetization attributed to S-class asteroids Gaspra and Braille. The extremely low magnetization state of 433 Eros places this object significantly below the levels generally associated with LL chondrites and undifferentiated primitive bodies, challenging our current understanding of the meteorite-asteroid connection.  相似文献   

6.
Lightcurves of 433 Eros are reported for 11 bandpasses ranging from 0.65 to 2.2 μm in wavelength. The relative spectral reflectance, R(λ), was not seen to vary during our observations. Eros has R(1.6 μm) = 1.5 ± 0.1 and R(2.2 μm) = 1.7 ± 0.1, where R(λ) is the spectral reflectance scaled to unity at λ = 0.56 μm. This spectral reflectance is suggestive of a mixture of silicates and material with high infrared reflectance, perhaps a metallic phase such as meteoritic “iron”.  相似文献   

7.
During its year-long orbital survey of Asteroid 433 Eros (February 14, 2000 to February 12, 2001) the NEAR Shoemaker spacecraft returned over 160,000 images of the surface, obtained under a wide variety of viewing conditions and resolutions. To handle this large volume of images of Eros, we have utilized specialized techniques for projecting, mosaicking, and photometrically analyzing images of irregular objects. Local incidence and emission angles are calculated on a pixel-by-pixel basis from the global shape model to produce a normalized reflectance map of the entire asteroid. This map provides not only a medium resolution (∼10 m/pixel) scientific product in its own right but also a regional context for high-resolution (<1 m/pixel) image sequences.  相似文献   

8.
Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros   总被引:5,自引:0,他引:5  
Prior to the Near Earth Asteroid Rendezvous (NEAR) mission, little was known about Eros except for its orbit, spin rate, and pole orientation, which could be determined from ground-based telescope observations. Radar bounce data provided a rough estimate of the shape of Eros. On December 23, 1998, after an engine misfire, the NEAR-Shoemaker spacecraft flew by Eros on a high-velocity trajectory that provided a brief glimpse of Eros and allowed for an estimate of the asteroid's pole, prime meridian, and mass. This new information, when combined with the ground-based observations, provided good a priori estimates for processing data in the orbit phase.After a one-year delay, NEAR orbit operations began when the spacecraft was successfully inserted into a 320×360 km orbit about Eros on February 14, 2000. Since that time, the NEAR spacecraft was in many different types of orbits where radiometric tracking data, optical images, and NEAR laser rangefinder (NLR) data allowed a determination of the shape, gravity, and rotational state of Eros. The NLR data, collected predominantly from the 50-km orbit, together with landmark tracking from the optical data, have been processed to determine a 24th degree and order shape model. Radiometric tracking data and optical landmark data were used in a separate orbit determination process. As part of this latter process, the spherical harmonic gravity field of Eros was primarily determined from the 10 days in the 35-km orbit. Estimates for the gravity field of Eros were made as high as degree and order 15, but the coefficients are determined relative to their uncertainty only up to degree and order 10. The differences between the measured gravity field and one determined from a constant density shape model are detected relative to their uncertainty only to degree and order 6. The offset between the center of figure and the center of mass is only about 30 m, indicating that Eros has a very uniform density (1% variation) on a large scale (35 km). Variations to degree and order 6 (about 6 km) may be partly explained by the existence of a 100-m, regolith or by small internal density variations. The best estimates for the J2000 right ascension and declination of the pole of Eros are α=11.3692±0.003° and δ=17.2273±0.006°. The rotation rate of Eros is 1639.38922±0.00015°/day, which gives a rotation period of 5.27025547 h. No wobble greater than 0.02° has been detected. Solar gravity gradient torques would introduce a wobble of at most 0.001°.  相似文献   

9.
本文简要介绍了与小行星有关的一些基本知识和在小行星搜寻方面的国际进展情况 ,侧重与ASTROD项目有关的内容。并介绍了与小行星定轨有关的网络资源  相似文献   

10.
The NEAR mission to 433 Eros provided detailed data on the geology, mineralogy, and chemistry of this S-class asteroid [McCoy, T.J., Robinson, M.S., Nittler, L.R., Burbine, T.H., 2002. Chem. Erde 62, 89-121; Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29] with a key science goal of understanding the relationship between asteroids and meteorites [Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29; Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993a. Icarus 106, 573-602]. Previously reported major element data revealed a bulk surface similar to that of ordinary chondrites, with the notable exception of sulfur, which was highly depleted [Trombka, J.I., and 23 colleagues, 2000. Science 289, 2101-2105; Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695]. The origin of this sulfur deficiency, and hence the fundamental nature of the asteroid's surface, has remained controversial. We report a new analysis of NEAR X-ray spectrometer data, indicating that Eros has Cr/Fe, Mn/Fe, and Ni/Fe ratios similar to ordinary chondrite meteorites of type LL or L. Chondritic levels of Cr, Mn, and Ni argue strongly against a partial melting explanation for the sulfur depletion. Instead, our results provide definitive evidence that Eros is a primitive body with composition and mineralogy similar to ordinary chondrites, but with a surface heavily modified by interactions with the solar wind and micrometeorites, processes collectively termed space weathering.  相似文献   

11.
NEAR at Eros     
J. Veverka 《Icarus》2002,155(1):1-2
  相似文献   

12.
We report on radiometric and reflected light observations of 433 Eros at high time resolution, high accuracy, and broad spectral coverage. We use a thermal inertia model to estimate the thermal inertia, albedo, and size of Eros. We find an albedo of 0.125 ± 0.025 with axes of 39.3 ± 2.0 × 16.1 ± 0.8 km. Our estimate of the albedo is about 30% lower than previous estimates.  相似文献   

13.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

14.
为更明确近地小行星撞击地球威胁的监测预警需求, 提出了"短期威胁小行星"的概念, 即未来100yr内可能对地球造成撞击威胁且等效直径大于10m的近地小行星. 以目前已发现的756颗短期威胁小行星为基础, 分析短期威胁小行星的轨道分布特点, 研究显示其与一般近地小行星的轨道分布存在差异, 短期威胁小行星的轨道半长轴更集中于1au, 轨道面更集中于黄道面. 基于近地小行星的数量模型, 初步建立了短期威胁小行星的数量估计模型, 并预估了未来100yr内存在撞击可能的短期威胁小行星的总体数量. 短期威胁小行星的特定研究对制定近地小行星搜巡监测策略有重要意义.  相似文献   

15.
E.F. Tedesco 《Icarus》1976,28(1):21-28
UBV photometry and lightcurves of Eros were obtained on nine dates between October 1974 and March 1975. The absolute V magnitude at photometric maximum extrapolated to a solar phase angle of zero is 10.75 while the linear phase coefficient is 0.026mag deg?1. The mean colors at solar phase angles greater than 30° are B?V = 0.92 and U?B = 0.52mag. No significant color variations over the surface were detected.  相似文献   

16.
Vasile Pop  Dorin Chis 《Icarus》1976,28(1):37-38
Photoelectric observations of the asteroid 433 Eros were carried out with the 50-cm reflector of the Astronomical Observatory of the University of Cluj-Napoca on January 21 and February 4 and 5, 1975.  相似文献   

17.
UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of 1974/75. The peak-to-peak amplitude of the lightcurve varied from about 0.3 mag to nearly 1.4mmag. The absolute V mag at maximum light, extrapolated to zero phase, is 10.85. Phase coefficients of 0.0233 mag/degree, 0.0009 mag/degree and 0.0004 mag/degree were derived for V, B-V, and U-B, respectively. The zero-phase color of Eros (B?V = 0.88, U?B = 0.50) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about 2.3:1. The asteroid is rotating about a short axis with the north pole at λ0 = 15° and β0 = 9°.  相似文献   

18.
Ben Zellner 《Icarus》1976,28(1):149-153
Newly available photometric, polarimetric, spectroscopic, thermal-radiometric, radar, and occultation results are synthesized in order to derive a coherent model for Eros. The geometric albedo is 0.19±0.01 at the visual wavelength, and the overall dimensions are approximately 13 × 15 × 36km. The rotation is about the short axis, in the direct sense, with a sidereal period of 5h16m13s.4. The pole of rotation lies within a few degrees of ecliptic coordinates λ = 16° and β = + 11°.Eros is uniformly coated with a particulate surface layer several millimeters thick. It has an iron-bearing silicate composition, similar to that of a minority of main-belt asteroids, and probably identifiable with H-type ordinary chondrites.  相似文献   

19.
Abstract— In late January 2001 the NEAR—Shoemaker spacecraft performed low‐altitude passes over the surface of 433 Eros. Coordinated observations of the asteroid surface were obtained at submeter resolution by the NEAR laser rangefinder and the multispectral imager. This paper presents three independent, coordinated observations of a 90 m pond adjacent to a granular debris flow, including the highest resolution altimetric measurements of ponded deposits on Eros. The ponded deposits appear to have been emplaced by fluid‐like motion of dry asteroidal regolith. A simple model of seismic agitation from impacts is developed to account for pond formation on Eros. The model predicts that ponds should form readily on Eros but not on the Moon, where ponds are not observed. The model also suggests that the absence of observable ponds in the largest craters of Eros, as well as on Phobos and Deimos, may be related to regolith depth.  相似文献   

20.
E. Miner  J. Young 《Icarus》1976,28(1):43-51
Five-color photoelectric lightcurves of asteroid 433 Eros were obtained on 9 nights during the 1974/75 apparition. Although color differences due to changing solar phase angle were detected, color differences during a single rotation of Eros are less than 1%. Amplitudes of up to 1m.44 were measured, and there are indications that three reversals in the relative depths of the two minima occured between late December 1974 and late January 1975. The absolute visual magnitude at primary maximum, corrected to zero phase and to one AU from Earth and Sun, is about V0(1,0) = 10m.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号