共查询到20条相似文献,搜索用时 15 毫秒
1.
Fred J. CieslaLon L. Hood 《Icarus》2002,158(2):281-293
We present numerical simulations of the thermal and dynamical histories of solid particles (chondrules and their precursors—treated as 1-mm silicate spheres) during passage of an adiabatic shock wave through a particle-gas suspension in a minimum-mass solar nebula. The steady-state equations of energy, momentum, and mass conservation are derived and integrated for both solids and gas under a variety of shock conditions and particle number densities using the free-molecular-flow approximation. These simulations allow us to investigate both the heating and cooling of particles in a shock wave and to compare the time and distance scales associated with their processing to those expected for natural chondrules. The interactions with the particles cause the gas to achieve higher temperatures and pressures both upstream and downstream of the shock than would be reached otherwise. The cooling rates of the particles are found to be nonlinear but agree approximately with the cooling rates inferred for chondrules by laboratory simulations. The initial concentration of solids upstream of the shock controls the cooling rates and the distances over which they are processed: Lower concentrations cool more slowly and over longer distances. These simulations are consistent with the hypothesis that large-scale shocks, e.g., those due to density waves or gravitational instabilities, were the dominant mechanism for chondrule formation in the nebula. 相似文献
2.
Jian-ZhongLiu Yong-Liao Zou Chun-Lai Li Lin Xu Zi-Yuan OuyangNational Astronomical Observatories Chinese Academy of Sciences Beijing jzliu@bao. ac. cnInstitute of Geochemistry Chinese Academy of Sciences Guiyang 《中国天文和天体物理学报》2004,4(2)
The Antarctic Continent has become the largest natural preservatory of meteorites in the world because of its unique geographical position and climatic conditions. Mt. Grove is located in the inland area of the Antarctic Continent where the conditions are favorable for the preservation of meteorites. During China's 15th, 16th and 19th Antarctic Scientific Explorations a large number of meteorites were recovered in the Mt. Grove region. Especially during the 19th Exploration in 2002/03 a total of 4448 meteorites were recovered, which at one stroke put China among countries that have recovered most numbers of meteorites. Here, we report mainly the results of microscope and electron microprobe studies of 28 meteorites recovered during the 16th Exploration. The meteorites are chemically classified based on their mean Fa contents of olivine, mean Fs contents of low-Ca pyroxene and abundances of Fe-Ni metal. We also give a brief account of the meteorite recovery during the three Explorations and of some preli 相似文献
3.
A Melt-through Model for Chaos Formation on Europa 总被引:1,自引:0,他引:1
The character of chaotic terrain on Europa is consistent with its formation by the melting of a thin conducting ice shell from below. Tidal dissipation can provide adequate energy for such a process. For example, only a few percent of Europa's predicted tidal heat, spread over a region 200 km in diameter, can lead to large melt regions within a few tens of thousands of years. Stronger, more localized concentrations result in melt-through in significantly shorter times (i.e., a few hundred years). The time scale for melt-through is shorter than the time scale for the solid-state viscous inflow of ice by several orders of magnitude. In general, modest concentrations of tidal heat can melt ice away faster than viscous inflow, leading to melt-through. A mechanism to transmit these heat concentrations through the ocean is required for this model. Such heat transport could be the result of convective plumes in the ocean driven by seafloor volcanism or by the destabilization of a stratified ocean. 相似文献
4.
We have conducted an investigation on the effects that the extracts of a non-carbonaceous meteorite could have on the germination and growth of plants and the ability of non-carbonaceous meteoritic resource to serve as nutrient source for young plants of edible types. Selected plants were two dicotyledons (Lycopersicon esculentum and Daucus carota) and one monocotyledon (Zea mays). Solution cultures were developed using seeds, seedlings and seed-embryos. Meteoritic powder was obtained from the Vigirima mesosiderite, which was analyzed by X-ray diffraction and atomic absorption spectrometry (AAS). Results showed that extracts having variable concentrations of meteoritic matter favored an earlier germination in some plant species but the increase of the concentrations produced a decreased germination. However, total germination rate was higher in the presence of meteoritic extracts than in the presence of controls in the all species. A high metabolic yield in the protein synthesis was seen in dicotyledons utilizing Type-A and B extracts having concentrations of 4.16-8.33×103 mg l−1. Phaeophytinization index and chlorophyll a/b ratio, suggesting a negative effect of the heavy metals or acidic ions over the photosynthetic activity when extracts having high meteoritic concentrations were utilized. However, a higher chlorophyll (a) production in comparison to that of chlorophyll (b) was seen in extracts (Type-A and -B) with low concentrations of meteoritic matter. On the other hand, Z. mays seed-embryos growing in extracts (Type-D) having 3.53×104 mg l−1 of meteoritic matter showed a protein production (9.81×10−2 mg protein mg wet wt−1) higher than that observed in seed-embryos coming from extracts having lower concentrations. However, in Murashige medium, the seed-embryos exhibited a enhanced growth and a relatively higher protein production (10.3×10−2 mg protein mg wet wt.−1). Further, chlorophyll (a+b) synthesis was higher in Murashige medium than in meteoritic extracts but chlorophyll a/b ratio was <1 in all extracts and controls. Our results suggest the usefulness of the non-carbonaceous meteoritic resource as a complementary soil component or fertilizers for culture of edible plants in space settlements and mainly for the production of young plants due to the positive metabolic effects on the chlorophyll synthesis, mitochondrial metabolism and cellular division caused by PO43−, Fe2+, Cu2+ and Ca2+ ions. Earlier germination responses obtained in the present experiments demonstrated the possibility to utilize germination chambers in space having wet substrates containing meteoritic-powder solutions to obtain a higher number of seedlings in a minimum degree of time. These results also reveal the biological potential of this non-carbonaceous meteoritic matter for the growth of organisms in the early Earth, Mars, and probably in other planetary bodies beyond our Solar system. 相似文献
5.
We present a kinetic model of the heating and acceleration of coronal protons by outward-propagating ion-cyclotron waves on open, radial magnetic flux tubes. In contrast to fluid models which typically insist on bi-Maxwellian distributions and which spread the wave energy and momentum over the entire proton population, this model follows the kinetic evolution of the collisionless proton distribution function in response to the combination of the resonant wave-particle interaction and external forces. The approximation is made that pitch-angle scattering by the waves is faster than all other processes, resulting in proton distributions which are uniform over the resonant surfaces in velocity space. We further assume, in this preliminary version, that the waves are dispersionless so these resonant surfaces are portions of spheres centered on the radial sum of the Alfvén speed and the proton bulk speed. We incorporate the fact that only those protons with radial speeds less than the bulk speed will be resonant with outward-propagating waves, so this rapid interaction acts only on the sunward half of the distribution. Despite this limitation, we find that the strong perpendicular heating of the resonant particles, coupled with the mirror force, results in substantial outward acceleration of the entire distribution. The proton distribution evolves towards an incomplete shell in velocity space, and appears vastly different from the distributions assumed in fluid models. Evidence of these distinctive distributions should be observable by instruments on Solar Probe. 相似文献
6.
本文用N-体数值模拟对标准宇宙的大尺度结构进行了研究,给出了一个能形成空洞、纤维状结构的模型。该模型意味着,密度扰动存在超团的特征尺度,并且,在较小的尺度上,扰动也没有全被抹平。 相似文献
7.
马駬 《中国天文和天体物理学报》1994,(2)
本文讨论了初始扰动谱中大尺度负密度扰动对星系尺度扰动峰值的局域密度的影响,以及空洞演化中边界壳层非线性发展的作用。结果表明它们并不能解释空洞的形成。但考虑星系相互作用在可见星系形成中的关键作用,把星系群与星系团的存在作为形成的必要条件时,可以用负密度扰动对星系团和星系群的局域密度的调制,解释30─60Mpc的空洞形成。对于更大尺度空洞的形成,则必须考虑对标准冷暗物质模型谱作出修正。 相似文献
8.
Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies. 相似文献
9.
星系中气体转化为恒星的过程决定了星系的结构和演化,因此研究恒星形成最直接的原料——分子气体的含量、分子气体形成恒星的规律以及会受哪些物理机制的影响,对于理解星系的形成和演化具有重要意义。近年来,随着观测技术和设备(尤其是射电望远镜)的发展,天文学家可以在不同尺度上探测到越来越多星系的多种分子多种能级跃迁的谱线。首先,介绍了探测分子气体的多种方法和新的发现;然后基于CO巡天数据和致密分子气体数据,分别在统计上讨论了分子气体分布及分子气体含量与恒星形成率之间的紧密关系,并与小尺度上的恒星形成理论进行了比较;最后,结合影响星系演化的物理过程,讨论活动星系核、星系形态以及星系所处环境对分子气体的影响。 相似文献
10.
Fundamental standing modes and their overtones play an important role in coronal seismology. We examine the effects of a significant field-aligned flow on standing modes that are supported by coronal loops, which are modeled here as cold magnetic slabs. Of particular interest are the period ratios of the fundamental to its (n?1)th overtone [P 1/nP n ] for kink and sausage modes, and the threshold half-width-to-length ratio for sausage modes. For standing kink modes, the flow significantly reduces P 1/nP n in general, the effect being particularly strong for higher n and weaker density contrast [ $\rho_{0}/\rho_{\rm e}$ ] between loops and their surroundings. That said, even when $\rho_{0}/\rho_{\rm e}$ approaches infinity, this effect is still substantial, reducing the minimal P 1/nP n by up to 13.7?% (24.5?%) for n=2 (n=4) relative to the static case, when the Alfvén Mach number [M A] reaches 0.8, where M A measures the loop flow speed in units of the internal Alfvén speed. Although it is not negligible for standing sausage modes, the flow effect in reducing P 1/nP n is not as strong. However, the threshold half-width-to-length ratio is considerably higher in the flowing case than in its static counterpart. For $\rho_{0}/\rho_{\rm e}$ in the range [9,1024] and M A in the range [0,0.5], an exhaustive parameter study yields that this threshold is well fitted by $(d/L)_{\rm cutoff, fit} = \frac{1}{2}\sqrt{\frac{1}{\rho_{0}/\rho_{\rm e}-1}} \exp (3.7 M_{\mathrm{A}}^{2} )$ , which involves the two parameters in a simple way. This allows one to analytically constrain the combination $(\rho_{0}/\rho_{\rm e}, M_{\mathrm {A}})$ for a loop with a known width-to-length ratio when a standing sausage oscillation is identified. It also allows one to examine the idea of partial sausage modes in more detail, and the flow is found to significantly reduce the spatial extent where partial modes are allowed. 相似文献
11.
Yi Xie Chang-Yin Huang Wei-Hua Lei 《中国天文和天体物理学报》2007,7(5):685-692
Many models of gamma-ray bursts suggest a common central engine:a black hole of several solar masses accreting matter from a disk at an accretion rate from 0.01 to 10 M_⊙s~(-1),the inner region of the disk is cooled by neutrino emission and large amounts of its binding energy are liberated,which could trigger the fireball.We improve the neutrino- dominated accreting flows by including the effects of magnetic fields.We find that more than half of the liberated energy can be extracted directly by the large-scale magnetic fields in the disk,and it turns out that the temperature of the disk is a bit lower than the neutrino-dominated accreting flows without magnetic field.Therefore,the outflows are magnetically-dominated rather than neutrino dominated.In our model,the neutrino mechanism can fuel some GRBs (not the brightest ones),but cannot fuel X-ray flares.The magnetic processes(both BZ and electromagnetic luminosity from a disk)are viable mechanisms for most of GRBs and their following X-ray flares. 相似文献
12.
The solar atmosphere is a dynamic environment, constantly evolving to form a wide range of magnetically dominated structures (coronal loops, spicules, prominences, etc.) which cover a significant percentage of the surface at any one time. Oscillations and waves in many of these structures are now widely observed and have led to the new analytic technique of solar magneto-seismology, where inferences of the background conditions of the plasma can be deduced by studying magneto-hydrodynamic (MHD) waves. Here, we generalise a novel magneto-seismological method designed to infer the density distribution of a bounded plasma structure from the relationship of its fundamental and subsequent harmonics. Observations of the solar atmosphere have emphatically shown that stratification, leading to complex density profiles within plasma structures, is common thereby rendering this work instantly accessible to solar physics. We show, in a dynamic waveguide, how the period ratio differs from the idealised harmonic ratios prevalent in homogeneous structures. These ratios show strong agreement with recent observational work. Next, anti-node shifts are also analysed. Using typical scaling parameters for bulk flows within atmospheric waveguides, e.g., coronal loops, it is found that significant anti-node shifts can be predicted, even to the order of 10 Mm. It would be highly encouraged to design specific observations to confirm the predicted anti-node shifts and apply the developed theory of solar magneto-seismology to gain more accurate waveguide diagnostics of the solar atmosphere. 相似文献
13.
We develop a new thermodynamic approach to the problem of the last stages of star formation, when a collapsing fragment evolves adiabatically into its final state: single protostar, surrounded or not by protoplanetary disc, or binary system. In this context, we point out the crucial role of the angular momentum transfer: a very efficient mechanism tends to form double stars with small mass secondaries, while a total decoupling yields twin binaries. Intermediate assumptions allow the birth of both kinds of binary systems, as well as the formation of not very massive protoplanetary discs. Discs of larger mass, which would be required to produce protoplanetary systems as a consequence of dynamical instabilities, do not form under any circumstances. A representation of the outcomes as functions of the corresponding initial conditions on the usual – plane gives well definite regions for single stars, protoplanetary discs, unbalanced systems and twin binaries. On this ground, a preliminary estimate of the percentage of stars surrounded by planetary systems is possible. A particular numerical simulation confirms the bimodality of the mass ratio distribution as well as the main features of the – plane partition. A few suggestions about non-adiabatic effects are also given. Our thermodynamic approach, supported by the numerical one and by the analysis of the observational statistics, allow to define a first unitary sketch for the formation of binary systems and protoplanetary discs. 相似文献
14.
Wang Lang 《Chinese Astronomy and Astrophysics》2018,42(4):527-537
In the galaxy parameter fitting by means of stellar population synthesis, it is found that compared with the evolutionary population synthesis (EPS) model without binary interactions, the stellar age and metallicity of a galaxy derived from the EPS model with binary interactions are larger. But, we are still unclear how the binary interactions affect the galaxy evolution. For the early-type galaxies with the UV-excess phenomenon, there are two main-stream explanations: recent star formation (RSF) and binary interactions. In this study, we obtain the mass return rate and chemical yield for the stellar populations with and without binary interactions. In combination with the galaxy chemical evolution and photoionization models, we study the effects of binary interactions on the chemical evolution and metallicity evolution for the early-type galaxies with the UV-excess phenomenon under the two formation mechanisms. We find that the inclusion of binary interactions can raise the ejected mass, metallicity, alpha element, and accelerate the gas cooling. These can reasonably explain the conclusions made by the EPS models. Moreover, we find that the gas cooling is more efficient under the UV-excess formation mechanism by the binary interactions rather than the RSF, and the ratio of element abundance is different for the two mechanisms, which can be further used to distinguish these two mechanisms. 相似文献
15.
Optical observations of comets and atmosphereless celestial bodies show that a change of sign of the linear polarization of scattered light from negative to positive at phase angles less than 20° is typical of the cometary coma, as well as of the regolith of Mercury, the Moon, planetary satellites, and asteroids. To explain a negative branch of polarization, this research suggests a unified approach to the treatment of cometary-dust particles and regolith grains as aggregate forms. A composite structure of aggregate particles resulting in the interaction of composing structural elements (monomers) in the light-scattering process is responsible for the negative polarization at small phase angles, if the monomer sizes are comparable to the wavelength. The characteristics of single scattering of light calculated for aggregates of this kind turned out to be close to the properties observed for cometary dust. Unlike the cometary coma, the regolith is an optically semi-infinite medium, where the interaction between particles is significant. To find the reflectance characteristics of regolith, the radiative-transfer equation should be solved for a regolith layer. In this case, the interaction between scatterers can be modeled to a certain extent by representing the regolith grains as aggregate structures consisting of several or many elements. Although real regolith grains are much larger than the particles considered here, laboratory measurements have shown that it is precisely the surface irregularities comparable to the wavelength that cause a negative branch of polarization. The main observed features of the phase and spectral dependence of the linear polarization of light scattered from comets and atmosphereless celestial bodies, which are due to the difference of the elementary scatterers in composition, size, and structure, can be successfully explained using the aggregate model of particles. 相似文献
16.
Paul G. LuceyJohn Hinrichs Mary KellyDennis Wellnitz Noam IzenbergScott Murchie Mark RobinsonBeth E. Clark James F. Bell III 《Icarus》2002,155(1):181-188
Data obtained by the near-infrared spectrometer carried by the NEAR-Shoemaker spacecraft show that the spectral properties of the asteroid Eros vary with temperature. The manner in which they vary demonstrates that the mineral olivine is a major constituent of the surface. The near-IR temperature-dependent spectral properties of Eros in the northern hemisphere, and for two individual regions on the surface, show clear evidence of the presence of the mineral olivine and are a close match to the temperature-spectral behavior of LL-type ordinary chondrite meteorites. While the presence of other olivine-rich meteorites cannot be excluded, H-type ordinary chondrites are clearly too pyroxene-rich to be permitted as a major surface component of Eros. The results of the thermal-spectral analysis are consistent with results from analysis of conventional reflectance spectra of the asteroid and contribute unambiguous detection of olivine to the understanding of the surface composition of Eros. 相似文献
17.
EIT waves are observed in EUV as bright fronts. Some of these bright fronts propagate across the solar disk. EIT waves are
all associated with a flare and a CME and are commonly interpreted as fast-mode magnetosonic waves. Propagating EIT waves
could also be the direct signature of the gradual opening of magnetic field lines during a CME. We quantitatively addressed
this alternative interpretation. Using two independent 3D MHD codes, we performed nondimensional numerical simulations of
a slowly rotating magnetic bipole, which progressively result in the formation of a twisted magnetic flux tube and its fast
expansion, as during a CME. We analyse the origins, the development, and the observability in EUV of the narrow electric currents
sheets that appear in the simulations. Both codes give similar results, which we confront with two well-known SOHO/EIT observations
of propagating EIT waves (7 April and 12 May 1997), by scaling the vertical magnetic field components of the simulated bipole
to the line of sight magnetic field observed by SOHO/MDI and the sign of helicity to the orientation of the soft X-ray sigmoids
observed by Yohkoh/SXT. A large-scale and narrow current shell appears around the twisted flux tube in the dynamic phase of its expansion. This
current shell is formed by the return currents of the system, which separate the twisted flux tube from the surrounding fields.
It intensifies as the flux tube accelerates and it is co-spatial with weak plasma compression. The current density integrated
over the altitude has the shape of an ellipse, which expands and rotates when viewed from above, reproducing the generic properties
of propagating EIT waves. The timing, orientation, and location of bright and faint patches observed in the two EIT waves
are remarkably well reproduced. We conjecture that propagating EIT waves are the observational signature of Joule heating
in electric current shells, which separate expanding flux tubes from their surrounding fields during CMEs or plasma compression
inside this current shell. We also conjecture that the bright edges of halo CMEs show the plasma compression in these current
shells. 相似文献
18.
Thermal stresses are potentially important drivers of Io's tectonics and mountain building. It has been hypothesized that sustained local or regional shut down of heat-pipe volcanism on Io could lead to deep crustal heating and large compressive stresses [McKinnon, W.B., Schenk, P.M., Dombard, A.J., 2001. Geology 29, 103-106]. Such large stresses would then be relieved by thrust faulting and uplifting of crustal blocks, producing mountains like those observed on Io. Here we analyze the tectonic consequences of the heat-pipe model in detail, considering both the initial thermal stress state of a basalt or peridotite crust created by heat-pipe volcanism, and relative roles of subsidence stresses (due to burial of preexisting layers) and thermal stresses arising from variable volcanism and changes in crustal (∼lithosphere) thickness. We limit the magnitude of the potential subsidence stresses in our study, because the magnitude of subsidence stresses can be quite large, if not dominant. Results indicate that for a fixed crustal thickness, the region of failure and faulting moves closer to the surface as eruption rate decreases and time increases. When the crust melts at its base as volcanism decreases (as might occur under steady state tidal heating), resulting in crustal thinning, the region of failure is brought even closer to the surface. Naturally, when compressive, subsidence stresses are included, the vertical extent of crust in brittle failure thickens to include most of the lithosphere. In contrast, increases in eruption rate cause the extent of the region in compressional failure to decrease and be driven very deep in the crust (in the absence of sufficient subsidence stress). Therefore, regions of declining volcanism are more likely to produce mountains, whereas regions of extensive or increasing volcanism are less likely to do so. This is consistent with the observation of a global anticorrelation between mountains and volcanic centers on Io. Finally, we find that the choice of crustal composition/rheology (dry basalt vs. dry peridotite) has little effect on our results implying that basalt, peridotite and komatiite are all similarly “stiff” in the Io environment. 相似文献
19.
We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H i Lyα emission line, but they are applicable to other spectral lines as well. 相似文献
20.
A model for the source of microwave bursts from the Crab pulsar in the form of a current sheet with a transversemagnetic field has been investigated. The emission generation mechanism is based on the excitation of plasma waves at the double plasma resonance frequencies in a nonrelativistic nonequilibrium plasma followed by their scattering into electromagnetic waves that escape from the current sheet into the neutron star magnetosphere. The basic parameters of the source explaining the observed characteristics of quasi-harmonic bursts in the interpulses of radio emission from this pulsar have been established. 相似文献