首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

2.
Preliminary measurements of craters and boulders have been made in various locations on Eros from images acquired during the first nine months of NEAR Shoemaker's orbital mission, including the October 2000 low altitude flyover. (We offer some very preliminary, qualitative analysis of later LAF images and very high-resolution images obtained during NEAR's landing on 12 February 2001). Craters on Eros >100 m diameter closely resemble the saturated crater population of Ida; Eros is more heavily cratered than Gaspra but lacks the saturated giant craters of Mathilde. These craters and the other large-scale geological features were formed over a duration of very roughly 2 Gyr while Eros was in the main asteroid belt, between the time when its parent body was disrupted and Eros was injected into an Earth-approaching orbit (probably tens of Myr ago). Saturation equilibrium had been expected to shape Eros' crater population down to very small sizes, as on the lunar maria. However, craters <200 m diameter are instead progressively depleted toward smaller sizes and are a factor of ∼200 below empirical saturation at diameters of 4 m. Conversely, boulders and positive relief features (PRFs) rise rapidly in numbers (differential power-law index ∼−5) and those <10 m in size dominate the landscape at high resolutions. The pervasive boulders and minimal craters on Eros is radically different from the lunar surface at similar scales. This may be partly explained by a major depletion of meter-scale projectiles in the asteroid belt (due to the Yarkovsky Effect: Bell 2001), which thus form few small craters and destroy few boulders. Additionally, the small size and low gravity of Eros may result in redistribution or loss of ejecta due to seismic shaking, thus preferentially destroying small craters formed in such regolith. Possibly Eros has only a patchy, thin regolith of mobile fines; the smaller PRFs may then reflect exposures of fractured bedrock or piles of large ejecta blocks, which might further inhibit formation of craters <10 m in size. Eros may well have been largely detached dynamically and collisionally from the main asteroid belt for the past tens of Myr, in which case its cratering rate would have dropped by two orders of magnitude, perhaps enhancing the relative efficacy of other processes that would normally be negligible in competition with cratering. Such processes include thermal creep, electrostatic levitation and redistribution of fines, and space weathering (e.g., bombardment by micrometeorites and solar wind particles). Combined with other small-body responses to impact cratering (e.g., greater widespread distribution of bouldery ejecta), such processes may also help explain the unexpected small-scale character of geology on Eros. If there was a recent virtual hiatus in cratering of Eros (during which only craters <∼300 m diameter would be expected to have formed), space weathering may have reached maturity, thus explaining Eros' remarkable spectral homogeneity compared with Ida.  相似文献   

3.
Abstract— In late January 2001 the NEAR—Shoemaker spacecraft performed low‐altitude passes over the surface of 433 Eros. Coordinated observations of the asteroid surface were obtained at submeter resolution by the NEAR laser rangefinder and the multispectral imager. This paper presents three independent, coordinated observations of a 90 m pond adjacent to a granular debris flow, including the highest resolution altimetric measurements of ponded deposits on Eros. The ponded deposits appear to have been emplaced by fluid‐like motion of dry asteroidal regolith. A simple model of seismic agitation from impacts is developed to account for pond formation on Eros. The model predicts that ponds should form readily on Eros but not on the Moon, where ponds are not observed. The model also suggests that the absence of observable ponds in the largest craters of Eros, as well as on Phobos and Deimos, may be related to regolith depth.  相似文献   

4.
The outcomes of asteroid collisional evolution are presently unclear: are most asteroids larger than 1 km size gravitational aggregates reaccreted from fragments of a parent body that was collisionally disrupted, while much smaller asteroids are collisional shards that were never completely disrupted? The 16 km mean diameter S-type asteroid 433 Eros, visited by the NEAR mission, has surface geology consistent with being a fractured shard. A ubiquitous fabric of linear structural features is found on the surface of Eros and probably indicates a globally consolidated structure beneath its regolith cover. Despite the differences in absolute scale and in lighting conditions for NEAR and Hayabusa, similar features should have been found on 25143 Itokawa if present. This much smaller, 320 m diameter S-asteroid was visited by the Hayabusa spacecraft. Comparative analyses of Itokawa and Eros geology reveal fundamental differences, and interpretation of Eros geology is illuminated by comparison with Itokawa. Itokawa lacks a global lineament fabric, and its blocks, craters, and regolith may be inconsistent with formation and evolution as a fractured shard, unlike Eros. An object as small as Itokawa can form as a rubble pile, while much larger Eros formed as a fractured shard. Itokawa is not a scaled-down Eros, but formed by catastrophic disruption and reaccumulation.  相似文献   

5.
NEAR Shoemaker imaging of the asteroid Eros has revealed a variety of surface forms that probably reflect underlying structures. They range from global to local in scale. The most prominent positive topographic feature is a long ridge, Rahe Dorsum, which extends over 18 km and has the morphology of a thrust fault. Two large, ancient trough systems are also present. Grooves are ubiquitous, commonly occur in suborthogonal sets, and have linear or scalloped outlines. The grooves on Eros are similar in morphology and scale to those on other small bodies such as Gaspra, Ida, and Phobos and are likely to have a similar mode of origin, namely drainage of regolith into underlying fractures. Models that use groove dimensions as indicators of regolith thickness imply depths of up to several tens of meters. Many craters have been subjected to structural control, resulting in squared outlines. We find no evidence that specific groove sets are associated with individual impact events; however, evidence exists that preexisting structures have been reactivated by later impact activity. The large scale of Rahe Dorsum and many grooves on Eros's surface suggests that the asteroid is a largely coherent, but fractured body.  相似文献   

6.
Abstract– We present results of a numerical model of the dynamics of ejecta emplacement on asteroid 433 Eros. Ejecta blocks represent the coarsest fraction of Eros’ regolith and are important, readily visible, “tracer particles” for crater ejecta‐blanket units that may be linked back to specific source craters. Model results show that the combination of irregular shape and rapid rotation of an asteroid can result in markedly asymmetric ejecta blankets (and, it follows, ejecta block spatial distribution), with locally very sharp/distinct boundaries. We mapped boulder number densities in NEAR‐Shoemaker MSI images across a portion of a predicted sharp ejecta‐blanket boundary associated with the crater Valentine and confirm a distinct and real ejecta‐blanket boundary, significant at least at the 3‐sigma level. Using our dynamical model, we “back track” the landing trajectories of three ejecta blocks with associated landing tracks in an effort to constrain potential source regions where those blocks were ejected from Eros’ surface in impact events. The observed skip distances of the blocks upon landing on Eros’ surface and the landing speeds and elevation angles derived from our model allow us to estimate the coefficient of restitution, ε, of Eros’ surface for impacts of 10‐m‐scale blocks at approximately 5 m s?1 impact speeds. We find mean values of ε of approximately 0.09–0.18.  相似文献   

7.
A photometric model of (433) Eros at wavelengths from 450 to 1050 nm is constructed using the combination of the images from the multispectral imager (MSI) obtained during the one-year long orbital phase of the NEAR mission, ground-based lightcurves from earlier observations, and our theoretical forward modeling simulations coupled with the NEAR shape model. The single scattering albedo is found to be 0.33±0.03 at 550 nm, which is smaller than past findings by 30%. The amplitude and width of the opposition effect are 1.4±0.1 and 0.010±0.004 from ground based lightcurves. It is confirmed that the asymmetry factor of the single-particle phase function and the surface roughness parameter do not depend on wavelength from 450 to 1050 nm, and their values are estimated to be −0.25±0.02 and 28°±3°, respectively, comparable with the earlier measurements from the NEAR NIS data. The geometric albedo and the Bond albedo at 550 nm are calculated to be 0.23 and 0.093, respectively, which make Eros less reflective than previous models, but still slightly more reflective than average S-type asteroids. The lower albedos of Eros are more consistent with our forward modeling simulations, as well as with its spectrum. Eros is a typical S-type asteroid like (951) Gaspra and (243) Ida, and has similar surface regolith properties. Combining the single-scattering albedo with the olivine composition of ordinary chondrites, taking into account space weathering darkening, we constrain the grain size of the regolith particles on Eros to a range of 50 to 100 μm.  相似文献   

8.
Impact-induced seismic vibrations have long been suspected of being an important surface modification process on small satellites and asteroids. In this study, we use a series of linked seismic and geomorphic models to investigate the process in detail. We begin by developing a basic theory for the propagation of seismic energy in a highly fractured asteroid, and we use this theory to model the global vibrations experienced on the surface of an asteroid following an impact. These synthetic seismograms are then applied to a model of regolith resting on a slope, and the resulting downslope motion is computed for a full range of impactor sizes. Next, this computed downslope regolith flow is used in a morphological model of impact crater degradation and erasure, showing how topographic erosion accumulates as a function of time and the number of impacts. Finally, these results are applied in a stochastic cratering model for the surface of an Eros-like body (same volume and surface area as the asteroid), with craters formed by impacts and then erased by the effects of superposing craters, ejecta coverage, and seismic shakedown. This simulation shows good agreement with the observed 433 Eros cratering record at a Main Belt exposure age of 400±200 Myr, including the observed paucity of small craters. The lowered equilibrium numbers (loss rate = production rate) for craters less than ∼100 m in diameter is a direct result of seismic erasure, which requires less than a meter of mobilized regolith to reproduce the NEAR observations. This study also points to an upper limit on asteroid size for experiencing global, surface-modifying, seismic effects from individual impacts of about 70-100 km (depending upon asteroid seismic properties). Larger asteroids will experience only localized (regional) seismic effects from individual impacts.  相似文献   

9.
From February 13 to May 13, 2000, the near-infrared spectrometer (NIS) instrument on the Near Earth Asteroid Rendezvous (NEAR) spacecraft obtained more than 200,000 spatially resolved 800- to 2500-nm reflectance spectra of the S-type asteroid 433 Eros. An important subset of the spectra was obtained during a unique opportunity on February 13 and 14, when the NEAR spacecraft flew directly through the 0° phase angle point between Eros and the Sun just prior to the orbital insertion maneuver. This low phase flyby (LPF) dataset consists of ∼2000 spectra of the northern hemisphere of Eros, obtained from 1° to 47° phase angle and at spatial resolutions of between 6×12 km to 1.25×2.50 km per spectrum. The spectra were calibrated to radiance factor (I/F, where I=observed radiance and πF=solar input radiance) and then photometrically corrected to normal albedo. The average northern hemisphere spectrum of Eros is similar to the asteroid's unresolved telescopic spectrum and exhibits absorption features near 1000 nm (Band I) and 2000 nm (Band II) consistent with an orthopyroxene to orthopyroxene+olivine (opx+ol) mixing ratio of approximately 0.38±0.08. The ensemble of NIS LPF spectra falls primarily within the S(IV) to upper S(III) fields of the Gaffey et al. (1993) S-asteroid classification scheme and exhibits Band I and Band II properties similar to those of ordinary chondrite meteorites. While some small spatially coherent spectral variations have been detected, neither the opx/opx+ol) mixing ratio nor other spectral parameters vary spatially by more than ∼1σ across the entire northern hemisphere of the asteroid, suggesting a remarkable homogeneity of the composition and mineralogy of the uppermost regolith. Spectral mixture modeling suggests that the presence of glass and/or a reddening agent like nanophase iron, likely formed from exposure of the regolith to the space environment, is a component of the surface of Eros. Reddening and darkening components could also explain the dissimilarity in overall spectral slope and albedo between Eros and other S(IV) asteroids and ordinary chondrite meteorites. The largest (but still weak) spectral variations across the surface are seen in the depths of Band I and Band II, which are greatest in and around the largest craters and at the 0° longitude “nose” of the asteroid, and in the Band II/Band I area ratio between the large impact craters Psyche and Himeros. These subtle NIS spectral variations are usually associated with albedo and surface slope variations seen in NEAR imaging and topographic data and appear to be related to downslope movement of regolith materials.  相似文献   

10.
High-resolution imaging acquired with the Near Earth Asteroid Rendezvous Shoemaker (NEAR Shoemaker) spacecraft is used to elucidate the spectral properties and spatial distribution of color units on Asteroid 433 Eros. Previous workers mapped four distinct types of color units on the surface (bright streaks, dark soils, ponded materials, average regolith). These units exhibit albedo and color boundaries but there is no evidence to indicate they represent distinct rock types. Rather the units are thought to show evidence of complex regolith transport and sorting processes. Here we report the results of a comprehensive study of all viable color MultiSpectral Imager (MSI) data to identify and characterize the distribution and nature of color units across the whole asteroid. Due to a spacecraft upset that resulted in contamination of the MSI optics, color images are affected with a scattered light problem that hampers interpretation of subtle color contrasts, even after a rigorous remediation. To constrain interpretations of the MSI color data we characterize this residual scattered light and demonstrate how complete correction would affect derived color ratios. Results of our comprehensive study are consistent with previous mapping—confirming that bright streaks, average regolith and dark soils fall on a mixing line, consistent with space weathering effects. We find that the ponded deposits do not fall on this putative mixing line. The color and reflectance of the ponded deposits are consistent with some combination of compositional, grain size and maturity variations from the average regolith. Additionally we show that spectral separation of the four units on ratio plots would only increase with full removal of residual scattered light, especially for features that are small in terms of pixels. Global analysis of the Eros color units illustrates complex regolith processes and grain sorting that may hold clues to understanding space weathering processes and the link between asteroids and meteorites.  相似文献   

11.
Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros   总被引:5,自引:0,他引:5  
Prior to the Near Earth Asteroid Rendezvous (NEAR) mission, little was known about Eros except for its orbit, spin rate, and pole orientation, which could be determined from ground-based telescope observations. Radar bounce data provided a rough estimate of the shape of Eros. On December 23, 1998, after an engine misfire, the NEAR-Shoemaker spacecraft flew by Eros on a high-velocity trajectory that provided a brief glimpse of Eros and allowed for an estimate of the asteroid's pole, prime meridian, and mass. This new information, when combined with the ground-based observations, provided good a priori estimates for processing data in the orbit phase.After a one-year delay, NEAR orbit operations began when the spacecraft was successfully inserted into a 320×360 km orbit about Eros on February 14, 2000. Since that time, the NEAR spacecraft was in many different types of orbits where radiometric tracking data, optical images, and NEAR laser rangefinder (NLR) data allowed a determination of the shape, gravity, and rotational state of Eros. The NLR data, collected predominantly from the 50-km orbit, together with landmark tracking from the optical data, have been processed to determine a 24th degree and order shape model. Radiometric tracking data and optical landmark data were used in a separate orbit determination process. As part of this latter process, the spherical harmonic gravity field of Eros was primarily determined from the 10 days in the 35-km orbit. Estimates for the gravity field of Eros were made as high as degree and order 15, but the coefficients are determined relative to their uncertainty only up to degree and order 10. The differences between the measured gravity field and one determined from a constant density shape model are detected relative to their uncertainty only to degree and order 6. The offset between the center of figure and the center of mass is only about 30 m, indicating that Eros has a very uniform density (1% variation) on a large scale (35 km). Variations to degree and order 6 (about 6 km) may be partly explained by the existence of a 100-m, regolith or by small internal density variations. The best estimates for the J2000 right ascension and declination of the pole of Eros are α=11.3692±0.003° and δ=17.2273±0.006°. The rotation rate of Eros is 1639.38922±0.00015°/day, which gives a rotation period of 5.27025547 h. No wobble greater than 0.02° has been detected. Solar gravity gradient torques would introduce a wobble of at most 0.001°.  相似文献   

12.
Abstract— The near‐Earth asteroid rendezvous (NEAR) mission carried x‐ray/gamma‐ray spectrometers and multi‐spectral imager/near‐infrared spectrometer instrument packages which gave complementary information on the chemistry and mineralogy, respectively, of the target asteroid 433 Eros. Synthesis of these two data sets provides information not available from either alone, including the abundance of non‐mafic silicates, metal and sulfide minerals. We have utilized four techniques to synthesize these data sets. Venn diagrams, which examine overlapping features in two data sets, suggest that the best match for 433 Eros is an ordinary chondrite, altered at the surface of the asteroid, or perhaps a primitive achondrite derived from material mineralogically similar to these chondrites. Normalized element distributions preclude FeO‐rich pyroxenes and suggest that the x‐ray and gamma‐ray data can be reconciled with a common silicate mineralogy by inclusion of varying amounts of metal. Normative mineralogy cannot be applied to these data sets owing to uncertainties in oxygen abundance and lack of any constraints on the abundance of sodium. Matrix inversion for simultaneous solution of mineral abundances yields reasonable results for the x‐ray‐derived bulk composition, but seems to confirm the inconsistency between mineral compositions and orthopyroxene/clinopyroxene ratios. A unique solution does not seem possible in synthesizing these multiple data sets. Future missions including a lander to fully characterize regolith distribution and sample return would resolve the types of problems faced in synthesizing the NEAR data.  相似文献   

13.
A. Mantz  R. Sullivan  J. Veverka 《Icarus》2004,167(1):197-203
Images of Eros from the NEAR Shoemaker spacecraft reveal bright and dark albedo features on steep crater walls unlike markings previously observed on asteroids. These features have been attributed to the downslope movement of space-weathered regolith, exposing less weathered material (Science 292 (2001) 484; Meteor. Planet. Sci. 36 (2001) 1617; Icarus 155 (2002) 145). Here we present observations of the interiors of large craters (>1 km in diameter) to test this hypothesis and constrain the origin of the features. We find that bright regions in these craters correspond to steep slopes, consistent with previous work. The geographic distribution of craters with albedo variations shows no pattern and does not resemble the distribution of ponds, another phenomenon on Eros attributed to regolith movement. Shadows and other indications of topography are not observed at feature boundaries, implying that the transported layer is ?1 m thick. The presence of multiple bright and dark units on long slopes with sharp boundaries between them suggests that mobilized regolith may be halted by frictional or other effects before reaching the foot of the slope. Features on crater walls should darken at the same rate as bright ejecta deposits from crater formation; the lack of observed, morphologically fresh craters with bright interiors or ejecta suggests that the albedo patterns are younger than the most recently formed craters greater than about 100 m in diameter. Smaller or micrometeorite impacts, which would not necessarily leave evident deposits of bright ejecta, remain possible causes of albedo patterns. Although their effectiveness is difficult to assess, electrostatic processes and thermal creep are also candidates.  相似文献   

14.
Andrew F Cheng 《Icarus》2004,169(2):357-372
A new synthesis of asteroid collisional evolution is motivated by the question of whether most asteroids larger than ∼1 km size are strengthless gravitational aggregates (rubble piles). NEAR found Eros not to be a rubble pile, but a shattered collisional fragment, with a through-going fracture system, and an average of about 20 m regolith cover. Of four asteroids visited by spacecraft, none appears likely to be a rubble pile, except perhaps Mathilde. Nevertheless, current understanding of asteroid collisions and size-dependent strength, and the observed distribution of rotation rates versus size, have led to a theoretical consensus that many or most asteroids larger than 1 km should be rubble piles. Is Eros, the best-observed asteroid, highly unusual because it is not a rubble pile? Is Mathilde, if it is a rubble pile, like most asteroids? What would be expected for the small asteroid Itokawa, the MUSES-C sample return target? An asteroid size distribution is synthesized from the Minor Planet Center listing and results of the Sloan Digital Sky Survey, an Infrared Space Observatory survey, the Small Main-belt Asteroid Spectroscopic Survey and the Infrared Astronomical Satellite survey. A new picture emerges of asteroid collisional evolution, in which the well-known Dohnanyi result, that the size distribution tends toward a self-similar form with a 2.5-index power law, is overturned because of scale-dependent collision physics. Survival of a basaltic crust on Vesta can be accommodated, together with formation of many exposed metal cores. The lifetimes against destruction are estimated as 3 Gyr at the size of Eros, 10 Gyr at ten times that size, and 40 Gyr at the size of Vesta. Eros as a shattered collisional fragment is not highly unusual. The new picture reveals the new possibility of a transition size in the collisional state, where asteroids below 5 km size would be primarily collisional breakup fragments whereas much larger asteroids are mostly eroded or shattered survivors of collisions. In this case, well-defined families would be found in asteroids larger than about 5 km size, but for smaller asteroids, families may no longer be readily separated from a background population. Moreover, the measured boulder size distribution on Eros is re-interpreted as a sample of impactor size distributions in the asteroid belt. The regolith on Eros may result largely from the last giant impact, and the same may be true of Itokawa, in which case about a meter of regolith would be expected there. Even a small asteroid like Itokawa may be a shattered object with regolith cover.  相似文献   

15.
Abstract— We present combined multi‐spectral imager (MSI) (0.95 μm) and near‐infrared spectrometer (NIS) (0.8–2.4 μm) observations of Psyche crater on S‐type asteroid 433 Eros obtained by the Near‐Earth Asteroid Rendezvous (NEAR)—Shoemaker spacecraft. At 5.3 km in diameter, Psyche is one of the largest craters on Eros which exhibit distinctive brightness patterns consistent with downslope motion of dark regolith material overlying a substrate of brighter material. At spatial scales of 620 m/ spectrum, Psyche crater wall materials exhibit albedo contrasts of 32–40% at 0.946 μm. Associated spectral variations occur at a much lower level of 4–8% (±2–4%). We report results of scattering model and lunar analogy investigations into several possible causes for these albedo and spectral trends: grain size differences, olivine, pyroxene, and troilite variations, and optical surface maturation. We find that the albedo contrasts in Psyche crater are not consistent with a cause due solely to variations in grain size, olivine, pyroxene or lunar‐like optical maturation. A grain size change sufficient to explain the observed albedo contrasts would result in strong color variations that are not observed. Olivine and pyroxene variations would produce strong band‐correlated variations that are not observed. A simple lunar‐like optical maturation effect would produce strong reddening that is not observed. The contrasts and associated spectral variation trends are most consistent with a combination of enhanced troilite (a dark spectrally neutral component simulating optical effects of shock) and lunar‐like optical maturation. These results suggest that space weathering processes may affect the spectral properties of Eros materials, causing surface exposures to differ optically from subsurface bedrock. However, there are significant spectral differences between Eros' proposed analog meteorites (ordinary chondrites and/or primitive achondrites), and Eros' freshest exposures of subsurface bright materials. After accounting for all differences in the measurement units of our reflectance comparisons, we have found that the bright materials on Eros have reflectance values at 0.946 μm consistent with meteorites, but spectral continua that are much redder than meteorites from 1.5 to 2.4 μm. Most importantly, we calculate that average Eros surface materials are 30–40% darker than meteorites.  相似文献   

16.
Stereogrammetric measurement of the shape of Eros using images obtained by NEAR's Multispectral Imager provides a survey of the major topographic features and slope processes on this asteroid. This curved asteroid has radii ranging from 3.1 to 17.7 km and a volume of 2535±20 km3. The center of figure is within 52 m of the center of mass provided by the Navigation team; this minimal difference suggests that there are only modest variations in density or porosity within the asteroid. Three large depressions 10, 8, and 5.3 km across represent different stages of degradation of large impact craters. Slopes on horizontal scales of ∼300 m are nearly all less than 35°, although locally scarps are much steeper. The area distribution of slopes is similar to those on Ida, Phobos, and Deimos. Regions that have slopes greater than 25° have distinct brighter markings and have fewer large ejecta blocks than do flatter areas. The albedo patterns that suggest downslope transport of regolith have sharper boundaries than those on Phobos, Deimos, and Gaspra. The morphology of the albedo patterns, their lack of discrete sources, and their concentration on steeper slopes suggest transport mechanisms different from those on the previously well-observed small bodies, perhaps due to a reduced relative effectiveness of impact gardening on Eros. Regolith is also transported in talus cones and in connected, sinuous paths extending as much as 2 km, with some evident as relatively darker material. Talus material in at least one area is a discrete superposed unit, a feature not resolved on other small bodies. Flat-floored craters that apparently contain ponded material also suggest discrete units that are not well mixed by impacts.  相似文献   

17.
The surface topography of Asteroid 25143 Itokawa is explored using the LIght Detection And Ranging instrument (LIDAR). The data confirm the presence of a rough highland and a smooth lowland. The highland is dominated by boulders, but also possesses topography associated with surface lineaments and broad surface facets. The boulders ensure that the roughness of the highlands over short distances is typically greater relative to most surfaces on 433 Eros. Over larger distances, Itokawa is always smoother than Eros possibly because of its smaller size and weak rubble-pile structure. The lowlands of Itokawa are very smooth, and are typically devoid of boulders. Some transitional regions midway between the highlands and lowlands also exist. In these areas, craters that retain their regolith fill possess flat floors and resemble “ponds” seen on 433 Eros. Analyses of surface elevation, imagery and a quantitative measure of surface roughness are consistent with regolith flowing downhill from the highlands to fill in the low areas of Itokawa, probably covering up any pre-existing rough terrain. Using this interpretation, we find a minimum 2.3±0.4 m thick layer of regolith in the lowlands, which, if spread evenly across the entire asteroid, corresponds to a 42±1 cm thick layer. It is very difficult to generate this amount of regolith with the population of craters seen on Itokawa. However, an Itokawa composed of several large masses may have retained this regolith during its formation. The presence of such large masses could account for the observed lineaments and what appear to be exposures of bedrock on the largest steep slope observed.  相似文献   

18.
During a failed Eros orbit insertion maneuver on 20 December 1998, more than 28 kg of hydrazine were expended by attitude control jets on the NEAR Shoemaker spacecraft. Deposition of burn products on the outer optic of the multispectral imager, or MSI, resulted in a wavelength-dependent degradation of the system point-spread function (PSF). The scattered light is progressively worse in the shortest and longest wavelength filters, especially at 450 and 1050 nm. The degraded PSF was characterized using numerous images of Canopus acquired subsequent to the anomaly. There is no evidence for temporal change in the PSF since the burn abort incident. A fast Fourier transform-based image restoration method using the optimal filter recovers most of the spatial resolution of the original images while preserving radiometric accuracy for the 550- to 1000-nm images. This procedure has enabled nearly unimpeded monochrome imaging of asteroid morphology and select 5-color measurements at a scale of ∼5 pixels.  相似文献   

19.
The surprisingly low S/Si ratio of Asteroid 433 Eros measured by the NEAR Shoemaker spacecraft probably reflects a surface depletion rather than a bulk property of the asteroid. The sulfur X-ray signal originates at a depth <10 μm in the regolith. The most efficient process for vaporizing minerals at the heliocentric distance of Eros are sputtering by solar wind ions and hypervelocity impacts. These are the same processes that account for the changes in optical properties of asteroids attributed to “space weathering” of lunar surface materials, although the relative importance of sputtering and impacts need not be the same for the Moon and asteroids. Troilite, FeS, which is the most important sulfide mineral in meteorites, and presumably on S-type asteroids like Eros, can be vaporized by much less energy than other major minerals, and will therefore be preferentially lost. Within 106 years either process can remove sulfide from the top 10-100 μm of regolith. Sulfur will be lost into space and some sulfur will migrate to deeper regolith layers. We also consider other possible mechanisms of surficial sulfur depletion, such as mineral segregation in the regolith and perhaps even incipient melting. Although we consider solar wind sputtering the most likely cause of the sulfur depletion on Eros, we cannot entirely rule out other processes as causes of the sulfur deficiency. Laboratory simulations of the relevant processes can address some of the open questions. Simulations will have to be carried out in such a way that potential sulfur loss processes as well as resurfacing can be studied simultaneously, requiring a large and complex environmental chamber.  相似文献   

20.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号