首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eris, an object larger than Pluto, is known to reside in the transneptunian region further away than Pluto. One can wonder whether its semimajor orbital axis fits in a generalized Titius–Bode law, in the same way as Pluto does. We performed a new least-squares fit to a generalized Titius–Bode law including Eris and found that not only does Eris fit in the trend, but also the correlation coefficient improves. In addition, there is a remarkable symmetry of the location of the planetary formation regions with respect to Jupiter when the natural logarithm of the heliocentric distance is used as the metric. The issue of whether the observed patterns have some physical meaning or are due to mere chance is addressed using a Monte Carlo approach identical to that of Lynch. Although the probability of chance occurrence is highly dependent on the way in which the random configurations of synthetic planetary systems are selected, we find that in all reasonable scenarios of random planetary systems the probability of chance occurrence of the observed patterns is small (below 1 per cent in most cases). If the trend were used as a prediction tool, one might expect another planet or dwarf planet or a swarm of bodies with semimajor orbital axis of 120 ± 20 au. Simple calculations show that the protoplanetary nebula most likely had enough mass to allow the accretion of at least a dwarf planet at that distance. We also found that if the surface density of the nebula decayed with heliocentric distance ( r ) as a power of −2, the regular spacing in ln  r in the Solar system could be a natural consequence of the existence of a threshold mass for planetary formation.  相似文献   

2.
Abstract— We present a novel Markov‐Chain Monte‐Carlo orbital ranging method (MCMC) for poorly observed single‐apparition asteroids with two or more observations. We examine the Bayesian a posteriori probability density of the orbital elements using methods that map a volume of orbits in the orbital‐element phase space. In particular, we use the MCMC method to sample the phase space in an unbiased way. We study the speed of convergence and also the efficiency of the new method for the initial orbit computation problem. We present the results of the MCMC ranging method applied to three objects from different dynamical groups. We conclude that the method is applicable to initial orbit computation for near‐Earth, main‐belt, and transneptunian objects.  相似文献   

3.
We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.  相似文献   

4.
Our research combines mean motion resonances and dissipative forces in the averaged elliptic spatial restricted three-body problem. The models presented can be applied in many contexts mixing resonances and dissipations,e.g., asteroid belt, transneptunian region, exoplanets, systems of planetary rings, etc. We propose a semi-numerical model that simulates the behaviour of test particles under the effect of generic forces, functions of powers of the position and/or of the velocity. This model is valid for any orbital eccentricities or inclinations, even at high values. Captures around symmetric and asymmetric equilibria are reproduced and the apparitions of a plateau of inclination for long periods of time are dectected.  相似文献   

5.
We study planetary migration in a gas-free disk of planetesimals. In the case of our Solar System we show that Neptune could have had either a damped migration, limited to a few AUs, or a forced migration up to the disk's edge, depending on the disk's mass density. We also study the possibility of runaway migration of isolated planets in very massive disk, which might be relevant for extra-solar systems. We investigate the problem of the mass depletion of the Kuiper belt in the light of planetary migration and conclude that the belt lost its pristine mass well before that Neptune reached its current position. Therefore, Neptune effectively hit the outer edge of the proto-planetary disk. We also investigate the dynamics of massive planetary embryos embedded in the planetesimal disk. We conclude that the elimination of Earth-mass or Mars-mass embryos originally placed outside the initial location of Neptune also requires the existence of a disk edge near 30AU.  相似文献   

6.
We present a GPU-accelerated numerical integrator specifically optimized for stability calculations of small bodies in planetary systems. Specifically, the integrator is designed for cases when large numbers of test particles (tens or hundreds of thousands) need to be followed for long durations (millions of orbits) to assess the orbital stability of their initially “close-encounter free” orbits. The GLISSE (Gpu Long-term Integrator for Solar System Evolution) code implements several optimizations to achieve a roughly factor of 100 speed increase over running the same code on a CPU. We explain how various hardware speed bottlenecks can be avoided by the careful code design, although some of the choices restrict the usage to specific types of application.As a first application, we study the long-term stability of small bodies initially on orbits between Uranus and Neptune. We map out in detail the small portion of the phase space in which small bodies can survive for 4.5 billion years of evolution; the ability to integrate large numbers of particles allow us to identify for the first time how instability-inducing mean-motion resonance overlaps sharply define the stable regions. As a second application, we map the boundaries of 4 Gyr stability for transneptunian objects in the 5:2 and 3:1 mean-motion resonances, demonstrating that long-term perturbations remove the initially stable Neptune-crossing members.  相似文献   

7.
The orbital evolution of asteroidal fragments with diameters ranging from 10 cm to 20 km, injected into the 3:1 Kirkwood gap at 2.50 A.U., has been investigated using Monte Carlo techniques. It is assumed that this material can become Earth-crossing on a time scale of 106 years, as a result of a chaotic zone discovered by Wisdom, associated with the 3:1 resonance. This phenomenon, as well as close encounter planetary perturbations, the v6 secular resonance, and the ablative effects of the Earth's atmosphere are included in the determination of the orbital characteristics of meteorites impacting the Earth derived by fragmentation of this asteroidal material. It is found that the predicted meteorite orbits closely match those found for observed ordinary chondrites, and the total flux is in approximate agreement with the observed fall rate of ordinary chondrites. About 10% of the predicted impacting bodies are meteorite-size bodies originating directly from the asteroid belt. The remainder are obtained by subsequent fragmentation of larger (~1 m to 20 km diameter) Earth-crossing asteroidal fragments. The largest of these fragments are observable as Apollo-Amor objects. Thus the apparent paradox between the orbital characteristics of observed ordinary chondrites and those predicted from Apollo object sources is reconciled. Both appear to be complementary aspects of the same phenomena. No other asteroidal resonance is found to be satisfactory as a source of ordinary chondrites. These meteorites are therefore most likely to be derived from S asteroids in this limited region of the asteroidal belt, the largest of which are 11 Parthenope, 17 Thetis, and 29 Amphitrite.  相似文献   

8.
The idea of a missing planet between Mars and Jupiter has been with us since the formulation of the Titius-Bode law. The discovery of the asteroid belt in that location led to speculation about a planetary breakup event. Both ideas remained conjectures until Ovenden's finding in 1972, from which it could be derived that the mass of the missing planet was about 90 Earth masses and that its breakup was astronomically recent. Apparently much of that mass was blown out of the solar system during the disruption of the planet. Because of the action of planetary perturbations, only two types of orbits of surviving fragments could remain at present-asteroid orbits and once-around very-long-period elliptical orbits. Objects in the latter type of orbit are known to exist-the very-long-period comets. A large number of these are on elliptical trajectories with periods of revolution of 5 million years; yet they are known to have made no more than one revolution in an orbit passing close to the Sun. By direct calculation it is possible to predict the distribution of the orbital elements of objects moving on long-period ellipses which might have originated in a breakup event in the asteroid belt 5 million years ago. The comet orbits have the predicted distribution in every case where a measure is possible. Some of the distribution anomalies, such as a bias in the directions of perihelion passage, are statistically strong and would be difficult to explain in any other uncontrived way. In addition, a relative deficiency of orbits with perihelia less than 1 AU indicates that the comets must have had small perihelion distances since their origin, rather than that they have been perturbed into small perihelion orbits from a distant “cloud” of comets by means of stellar encounters. The comet orbital data lead to the conclusion that all comets originated in a breakup event in the asteroid belt (5.5±0.6) × 106 years ago. Asteroid and meteoritic evidence can now be interpreted in a way which not only is supportive but also provides fresh insights into understanding their physical, chemical, and dynamical properties. Particularily noteworthy are the young cosmic-ray exposure ages of meteorites, evidence of a previous high-temperature/pressure environment and of chemical differentiation of the parent body, and compositional similarities among comets, asteroids, and meteorites. Certain “explosion signatures” in asteroid orbital element distributions are likewise indicative. Tektites may also have originated in the same event; but if so, there are important implications regarding the absolute accuracy of certain geological dating methods. Little is known about possible planetary breakup mechanisms of the requisite type, though some speculations are offered. In any case, the asteroid belt is an existing fact; and the arguments presented here that a large planet did disintegrate 5 million years ago must be judged on their merits, even in the absence of a suitable theory of planetary explosions.  相似文献   

9.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

10.
We present results of Monte Carlo simulations of orbital evolution showing that assuming a steady state there are roughly 50 extinct comets per active one in the Mars-crossing Jupiter family. The large number of extinct comets thus expected compared with the absence of observed apollo or Amor asteroids with aphelion distances greater than 4.2 AU indicates that less than five percent of the extinct comets survive as sizeable asteroidal bodies.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

11.
Oort cloud comets occasionally obtain orbits which take them through the planetary region. The perturbations by the planets are likely to change the orbit of the comet. We model this process by using a Monte Carlo method and cross sections for orbital changes, i.e. changes in energy, inclination and perihelion distance, in a single planet-comet encounter. The influence of all major planets is considered. We study the distributions of orbital parameters of observable comets, i.e. those which have perihelion distance smaller than a given value. We find that enough comets are captured from the Oort cloud in order to explain the present populations of short period comets. The median value of cos i for the Jupiter family is 0.985 while it is 0.27 for the Halley types. The results may explain the orbital features of short period comets, assuming that the active lifetime of a comet is not much greater than 400 orbital revolutions.  相似文献   

12.
Edward R.D. Scott 《Icarus》2006,185(1):72-82
Thermal models and radiometric ages for meteorites show that the peak temperatures inside their parent bodies were closely linked to their accretion times. Most iron meteorites come from bodies that accreted <0.5 Myr after CAIs formed and were melted by 26Al and 60Fe, probably inside 2 AU. Rare carbon-rich differentiated meteorites like ureilites probably also come from bodies that formed <1 Myr after CAIs, but in the outer part of the asteroid belt. Chondrite groups accreted intermittently from diverse batches of chondrules and other materials over a 4 Myr period starting 1 Myr after CAI formation when planetary embryos may already have formed at ∼1 AU. Meteorite evidence precludes accretion of late-forming chondrites on the surface of early-formed bodies; instead chondritic and non-chondritic meteorites probably formed in separate planetesimals. Maximum metamorphic temperatures in chondrite groups are correlated with mean chondrule age, as expected if 26Al and 60Fe were the predominant heat sources. Because late-forming bodies could not accrete close to large, early-formed bodies, planetesimal formation may have spread across the nebula from regions where the differentiated bodies formed. Dynamical models suggest that the asteroids could not have accreted in the main belt if Jupiter formed before the asteroids. Therefore Jupiter probably reached its current mass >3-5 Myr after CAIs formed. This precludes formation of Jupiter via a gravitational instability <1 Myr after the solar nebula formed, and strongly favors core accretion. Jupiter probably formed too late to make chondrules by generating shocks directly, or indirectly by scattering Ceres-sized bodies across the belt. Nevertheless, shocks formed by gravitational instabilities or Ceres-sized bodies scattered by planetary embryos may have produced some chondrules. The minimum lifetime for the solar nebula of 3-5 Myr inferred from the total spread of CAI and chondrule ages may exceed the median lifetime of 3 Myr for protoplanetary disks, but is well within the 1-10 Myr observed range. Shorter formation times for extrasolar planets may help to explain their unusual orbits compared to those of solar giant planets.  相似文献   

13.
We perform numerical simulations to study the secular orbital evolution and dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-tem can be stable for at least 108 yr. In addition, we extensively investigate the planetary configuration of four outer companions with one terrestrial planet in the wide region of 0.790 AU ≤ a ≤ 5.900 AU to examine the existence of potential asteroid structure and Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1 and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with relatively low eccentricities.  相似文献   

14.
Long-period (LP) comets, Halley-type (HT) comets, and even some comets of the Jupiter family, probably come from the Oort cloud, a huge reservoir of icy bodies that surrounds the solar system. Therefore, these comets become important probes to learn about the distant Oort cloud population. We review the fundamental dynamical properties of LP comets, and what is our current understanding of the dynamical mechanisms that bring these bodies from the distant Oort cloud region to the inner planetary region. Most new comets have original reciprocal semimajor axes in the range2 × 10-5 < 1/aorig < 5 × 10-5AU-1. Yet, this cannot be taken to represent the actual space distribution of Oort cloud comets, but only the region in the energy space in which external perturbers have the greatest efficiency in bringing comets to the inner planetary region. The flux of Oort cloud comets in the outer planetary region is found to be at least several tens times greater than the flux in the inner planetary region. The sharp decrease closer to the Sun is due to the powerful gravitational fields of Jupiter and Saturn that prevent most Oort cloud comets from reaching the Earth’s neighborhood (they act as a dynamical barrier). A small fraction of ~10-2 Oort cloud comets become Halley type (orbital periods P < 200 yr), and some of them can reach short-period orbits with P < 20 yr. We analyze whether we can distinguish the latter, very ‘old” LP comets, from comets of the Jupier family coming from the Edgeworth-Kuiper belt.  相似文献   

15.
The final stage in the formation of terrestrial planets consists of the accumulation of ∼1000-km “planetary embryos” and a swarm of billions of 1-10 km “planetesimals.” During this process, water-rich material is accreted by the terrestrial planets via impacts of water-rich bodies from beyond roughly 2.5 AU. We present results from five high-resolution dynamical simulations. These start from 1000-2000 embryos and planetesimals, roughly 5-10 times more particles than in previous simulations. Each simulation formed 2-4 terrestrial planets with masses between 0.4 and 2.6 Earth masses. The eccentricities of most planets were ∼0.05, lower than in previous simulations, but still higher than for Venus, Earth and Mars. Each planet accreted at least the Earth's current water budget. We demonstrate several new aspects of the accretion process: (1) The feeding zones of terrestrial planets change in time, widening and moving outward. Even in the presence of Jupiter, water-rich material from beyond 2.5 AU is not accreted for several millions of years. (2) Even in the absence of secular resonances, the asteroid belt is cleared of >99% of its original mass by self-scattering of bodies into resonances with Jupiter. (3) If planetary embryos form relatively slowly, then the formation of embryos in the asteroid belt may have been stunted by the presence of Jupiter. (4) Self-interacting planetesimals feel dynamical friction from other small bodies, which has important effects on the eccentricity evolution and outcome of a simulation.  相似文献   

16.
Dynamicalmass estimates for the main asteroid belt and the trans-Neptunian Kuiper belt have been found from their gravitational influence on the motion of planets. Discrete rotating models consisting ofmovingmaterial points have been used tomodel the total attraction fromsmall or as yet undetected bodies of the belts. The masses of the model belts have been included in the set of parameters being refined and determined and have been obtained by processing more than 800 thousand modern positional observations of planets and spacecraft. We have processed the observations and determined the parameters based on the new EPM2017 version of the IAA RAS planetary ephemerides. The large observed radial extent of the belts (more than 1.2 AU for the main belt and more than 8 AU for the Kuiper belt) and the concentration of bodies in the Kuiper belt at a distance of about 44 AU found from observations have been taken into account in the discrete models. We have also used individual mass estimates for large bodies of the belts as well as for objects that spacecraft have approached and for bodies with satellites. Our mass estimate for the main asteroid belt is (4.008 ± 0.029) × 10?4/m (3σ). The bulk of the Kuiper belt objects are in the ring zone from 39.4 to 47.8 AU. The estimate of its total mass together with the mass of the 31 largest trans-Neptunian Kuiper belt objects is (1.97 ± 0.30) × 10?2m (3σ), which exceeds the mass of the main asteroid belt almost by a factor of 50. The mass of the 31 largest trans-Neptunian objects (TNOs) is only about 40% of the total one.  相似文献   

17.
We present results of a simulation of a steady-state binary near-Earth asteroid (NEA) population. This study combines previous work on tidal disruption of gravitational aggregates [Walsh, K.J., Richardson, D.C., 2006. Icarus 180, 201-216] with a Monte Carlo simulation of NEA planetary encounters. Evolutionary effects include tidal evolution and binary disruption from close planetary encounters. The results show that with the best known progenitor (small Main Belt asteroids) shape and spin distributions, and current estimates of NEA lifetime and encounter probabilities, that tidal disruption should account for approximately 1-2% of NEAs being binaries. Given the best observed estimate of a ∼15% binary NEA fraction, we conclude that there are other formation mechanisms that contribute significantly to this population. We also present the expected distribution of binary orbital and physical properties for the steady-state binary NEAs formed by tidal disruption. We discuss the effects on binary fraction and properties due to changes in the least constrained parameters, and other possible effects on our model that could account for differences between the presented results and the observed binary population. Finally, we model possible effects of a significant population of binaries migrating to the near-Earth population from the Main Belt.  相似文献   

18.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   

19.
Abstract— In the primordial solar system, the most plausible sources of the water accreted by the Earth were in the outer asteroid belt, in the giant planet regions, and in the Kuiper Belt. We investigate the implications on the origin of Earth's water of dynamical models of primordial evolution of solar system bodies and check them with respect to chemical constraints. We find that it is plausible that the Earth accreted water all along its formation, from the early phases when the solar nebula was still present to the late stages of gas‐free sweepup of scattered planetesimals. Asteroids and the comets from the Jupiter‐Saturn region were the first water deliverers, when the Earth was less than half its present mass. The bulk of the water presently on Earth was carried by a few planetary embryos, originally formed in the outer asteroid belt and accreted by the Earth at the final stage of its formation. Finally, a late veneer, accounting for at most 10% of the present water mass, occurred due to comets from the Uranus‐Neptune region and from the Kuiper Belt. The net result of accretion from these several reservoirs is that the water on Earth had essentially the D/H ratio typical of the water condensed in the outer asteroid belt. This is in agreement with the observation that the D/H ratio in the oceans is very close to the mean value of the D/H ratio of the water inclusions in carbonaceous chondrites.  相似文献   

20.
《Icarus》1998,132(1):113-124
We present results of two-dimensional gravitationalN-body simulations of the late stage of planetary formation. This stage is characterized by the direct accretion of hundreds of lunar-sized planetesimals into planetary bodies. Our simulation code is based on the Hermite Individual Timestep integration algorithm, and gravitational interactions among all bodies are included throughout the simulations. We compare our simulation with earlier works that do not include all interactions, and we find very good agreement. A previously published collisional fragmentation model is included in our simulation to study the effects of the production of fragments on the subsequent evolution of the larger planetary bodies. It is found that for realistic two-body collisions that, according to this model, both bodies will suffer fragmentation, and that the outcome of the collision will be a relatively large core containing most of the mass and a few small fragments. We present the results of simulations that include this simple fragmentation model. They indicate that the presence of small fragments have only a small effect on the growth or orbital evolution of the large planet-sized bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号