首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brightness and linear polarization measurements at 678.5 nm for four south-north strips of Jupiter are studied. These measurements were obtained in 1997 by the Galileo photopolarimeter/radiometer. The observed brightness exhibits latitudinal variations consistent with the belt/zone structure of Jupiter. The observed degree of linear polarization is small at low latitudes and increases steeply toward higher latitudes. No clear correlations were observed between the degree of linear polarization and the brightness. The observed direction of polarization changes from approximately parallel to the local scattering plane at low latitudes to perpendicular at higher latitudes. For our studies, we used atmospheric models that include a haze layer above a cloud layer. Parameterized scattering matrices were employed for the haze and cloud particles. On a pixel-wise basis, the haze optical thickness and the single-scattering albedo of the cloud particles were derived from the observed brightness and degree of linear polarization; results were accepted only if they were compatible with the observed direction of polarization. Using atmospheric parameter values obtained from Pioneer 10 and 11 photopolarimetry for the South Tropical Zone and the north component of the South Equatorial Belt, this analysis yielded acceptable results for very few pixels, particularly at small phase angles. However, for almost all pixels, acceptable results were found when the parameterized scattering matrix of the cloud particles was adjusted to produce more negative polarization for single scattering of unpolarized light, especially at large scattering angles, similar to some laboratory measurements of ammonia ice crystals. Using this adjusted model, it was found that the derived latitudinal variation of the single-scattering albedo of the cloud particles is consistent with the belt/zone structure, and that the haze optical thickness steeply increases toward higher latitudes.  相似文献   

2.
The dynamics of mergers of large circulations in Jupiter's atmosphere may permit different models of the atmosphere to be tested. We report well-resolved observations of such events at visible wavelengths: three anticyclonic and three cyclonic events. A merger of anticyclonic white ovals in the South South Temperate domain (2002 March) is compared with the previously reported merger of ovals BE and FA in the South Temperate domain (2000 March). In each case, the two similar-sized ovals converged rapidly once they were separated by less than the sum of their diameters; they orbited around each other anticyclonically during the merger; the merged oval initially had the same rapid drift as the western parent; and, in an unexpected similarity, a cyclonic oval emerged westward from the point of merger. Evidence suggests that a merger of smaller ovals in the North North Temperate domain (2002 February) had similar dynamics. In contrast, mergers of cyclonic ovals in the North Equatorial Belt (‘barges’: 2001 November, 2005 May) proceeded in a different manner. The two parent barges showed no consistent acceleration towards each other as they converged; on contact there was no obvious sign of mutual circulation, and the low-albedo regions had almost passed each other before they finally merged; and the resulting barge had a drift rate intermediate between the two parents, and a length that was greater than either parent. Again, a third such event involving a smaller barge (2002 December) showed many of the same characteristics. These observations define different dynamical behaviour during anticyclonic and cyclonic mergers.  相似文献   

3.
The in situ measurements of the Galileo Probe Mass Spectrometer (GPMS) were expected to constrain the abundances of the cloud-forming condensible volatile gases: H2O, H2S, and NH3. However, since the probe entry site (PES) was an unusually dry meteorological system—a 5-μm hotspot—the measured condensible volatile abundances did not follow the canonical condensation-limited vertical profiles of equilibrium cloud condensation models (ECCMs) such as Weidenschilling and Lewis (1973, Icarus 20, 465-476). Instead, the mixing ratios of H2S and NH3 increased with depth, finally reaching well-mixed equilibration levels at pressures far greater than the lifting condensation levels, whereas the mixing ratio of H2O in the deep well-mixed atmosphere could not be measured. The deep NH3 mixing ratio (with respect to H2) of (6.64±2.54)×10−4 from 8.9-11.7 bar GPMS data is consistent with the NH3 profile from probe-to-orbiter signal attenuation (Folkner et al., 1998, J. Geophys. Res. 103, 22847-22856), which had an equilibration level of about 8 bar. The GPMS deep atmosphere H2S mixing ratio of (8.9±2.1)×10−5 is the only measurement of Jupiter's sulfur abundance, with a PES equilibration level somewhere between 12 and 15.5 bar. The deepest water mixing ratio measurement is (4.9±1.6)×10−4 (corresponding to only about 30% of the solar abundance) at 17.6-20.9 bar, a value that is probably much smaller than Jupiter's bulk water abundance. The 15N/14N ratio in jovian NH3 was measured at (2.3±0.3)×10−3 and may provide the best estimate of the protosolar nitrogen isotopic ratio. The GPMS methane mixing ratio is (2.37±0.57)×10−3; although methane does not condense on Jupiter, we include its updated analysis in this report because like the condensible volatiles, it was presumably brought to Jupiter in icy planetesimals. Our detailed discussion of calibration and error analysis supplements previously reported GPMS measurements of condensible volatile mixing ratios (Niemann et al., 1998, J. Geophys. Res. 103, 22831-22846; Atreya et al., 1999, Planet. Space Sci. 47, 1243-1262; Atreya et al., 2003, Planet. Space Sci. 51, 105-112) and the nitrogen isotopic ratio (Owen et al., 2001b, Astrophys. J. Lett. 553, L77-L79). The approximately three times solar abundance of NH3 (along with CH4 and H2S) is consistent with enrichment of Jupiter's atmosphere by icy planetesimals formed at temperatures <40 K (Owen et al., 1999, Nature 402 (6759), 269-270), but would imply that H2O should be at least 3×solar as well. An alternate model, using clathrate hydrates to deliver the nitrogen component to Jupiter, predicts O/H?9×solar (Gautier et al., 2001, Astrophys. J. 550 (2), L227-L230). Finally we show that the measured condensible volatile vertical profiles in the PES are consistent with column-stretching or entraining downdraft scenarios only if the basic state (the pre-stretched column or the entrainment source region) is described by condensible volatile vertical profiles that are drier than those in the equilibrium cloud condensation models. This dryness is supported by numerous remote sensing results but seems to disagree with observations of widespread clouds on Jupiter at pressure levels predicted by equilibrium cloud condensation models for ammonia and H2S.  相似文献   

4.
Both deep zonal winds, if they exist, and the basic rotational distortion of Jupiter contribute to its zonal gravity coefficients Jn for n ? 2. In order to capture the gravitational signature of Jupiter that is caused solely by its deep zonal winds, one must take into account the full effect of rotational distortion by computing the coefficients Jn in non-spherical geometry. This represents a difficult and challenging problem because the widely-used spherical-harmonic-expansion method becomes no longer suitable. Based on the model of a polytropic Jupiter with index unity, we compute Jupiter’s gravity coefficients J2, J4, J6, … , J12 taking into account the full effect of rotational distortion of the gaseous planet using a finite element method. For the model of deep zonal winds on cylinders parallel to the rotation axis, we also compute the variation of the gravity coefficients ΔJ2, ΔJ4, ΔJ6, … , ΔJ12 caused solely by the effect of the winds in non-spherical geometry. It is found that the effect of the zonal winds on lower-order coefficients is weak, ∣ΔJn/Jn∣ < 1%, for n = 2, 4, 6, but it is substantial for the high-degree coefficients with n ? 8.  相似文献   

5.
Thirteen lines of the CO band near 4.7 μm have been observed on a jovian hot spot at a resolution of 0.045 cm−1. The measured line profiles indicate that the CO mole fraction is 1.0±0.2 ppb around the 6-bar level and is larger in the upper troposphere and/or stratosphere. An external source of CO providing an abundance of 4+3−2×1016 molecules cm−2 is implied by the observations in addition to the amount deposited at high altitude by the Shoemaker-Levy 9 collision. From a simple diffusion model, we estimate that the CO production rate is (1.5-10)×106 molecules cm−2 s−1 assuming an eddy diffusion coefficient around the tropopause between 300 and 1500 cm2 s−1. Precipitation of oxygen atoms from the jovian magnetosphere or photochemistry of water vapor from meteoroidal material can only provide a negligible contribution to this amount. A significant fraction of the CO in Jupiter's upper atmosphere may be formed by shock chemistry due to the infall of kilometer- to subkilometer-size Jupiter family comets. Using the impact rate from Levison et al. (2000, Icarus143, 415-420) rescaled by Bottke et al. (2002, Icarus156, 399-433), this source can provide the observed stratospheric CO only if the eddy diffusion coefficient around the tropopause is 100-300 cm2 s−1. Higher values, ∼700 cm2 s−1, would require an impact rate larger by a factor of 5-10, which cannot be excluded considering uncertainties in the distribution of Jupiter family comets. Such a large rate is indeed consistent with the observed cratering record of the Galilean satellites (Zahnle et al. 1998, Icarus136, 202-222). On the other hand, the ∼1 ppb concentration in the lower troposphere requires an internal source. Revisiting the disequilibrium chemistry of CO in Jupiter, we conclude that rapid vertical mixing can provide the required amount of CO at ∼6 bar for a global oxygen abundance of 0.2-9 times the solar value considering the uncertainties in the convective mixing rate and in the chemical constants.  相似文献   

6.
Nurmi  P.  Valtonen  M. J.  Zheng  J. Q.  Mikkola  S.  Rickman  H. 《Earth, Moon, and Planets》1997,77(3):239-244
We have developed an efficient Monte Carlo method by which we can evaluate the evolution of comets. There are many poorly known evolutional parameters, and we have investigated the influence of these parameters on the final populations and the inclination distributions of short-period comets. We compare the observed and calculated inclination distributions of different comet populations and obtain a good fit for the inclinations of the Jupiter family comets by assuming a mantle blow-off and a sudden brightening of the comet when its perihelion distance is lowered in a major jump. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
J. Arregi  R. Hueso 《Icarus》2009,202(1):358-360
A reanalysis of Galileo images of Jupiter's Equatorial Zone obtained in 1999 and 2001 reveals the presence of trains of cloud bands, probably generated by gravity waves, similar to those seen in Voyager 1 and 2 (1979) and New Horizons (2007) images. No such waves have been found in a similar analysis of the Cassini flyby (2000) dataset. We present the properties of these waves and discuss them in the context of previously proposed models and observations.  相似文献   

8.
The cloud structure of the jovian atmosphere at pressures less than 2 bars has previously been estimated using near-infrared observations such as those by both the Solid State Imager (SSI) and Near-Infrared Mapping Spectrometer (NIMS) instruments on board the Galileo spacecraft. Unfortunately, complete near-infrared spectra, such as those measured by NIMS, take a long time to be analyzed with multiple-scattering radiative transfer models and thus it has until now been rather difficult to use these data to produce wide-area cloud maps.In this paper we show how principal component analysis may be employed to isolate a small number of empirical orthogonal functions (EOFs) from spectra of Jupiter made by Galileo/NIMS. These EOFs may be used to represent the variance of real NIMS spectra to a high degree of accuracy and with good noise and “drop-out” discrimination. Because of this, a small set of representative spectra may then be calculated using these EOFs and input into a retrieval model that generates a table of fitted cloud profiles for each case. This approach avoids the long times required for analyzing a large number of spectra with full multiple-scattering radiative transfer models and allows us to represent the variability of the 3000 spectra contained in the observations of the North Equatorial Belt (NEB) used in this study with only 75 representative spectra. The cloud structures fitted to these representative spectra were interpolated for the spectra found at individual locations in the measured NIMS data set to produce maps of cloud opacity and mean particle size. We find that the dominant opacity variation, anticorrelated with 5-μm brightness, exists in the 1-2 bar pressure range. The distribution of the cloud at 0.72 bars is mapped and found to be more zonally diffuse than the lower clouds. We find at least one 2000-km-sized deep convective cloud in the NEB vertically extending to all the pressure levels that can be sensed by NIMS.  相似文献   

9.
We present a second epoch of Very Large Array Saturn observations taken in February 1997 spanning wavelengths 1.3-21 cm. These observations complement earlier observations at Saturn's autumnal equinox in November 1995. In this epoch, however, we generally have better signal-to-noise ratios and the ring inclination of the present observations was −5.0°, whereas the previous observations were made with ring inclination +2.7°.Our observations confirm the latitudinal structure on the saturnian disk as seen at 2.0, 3.6, and 6.1 cm. We also see some latitudinal structure at 1.3 cm for the first time. The details of this structure have changed dramatically from those reported by I. de Pater and J. R. Dickel (1991, Icarus94, 474-492) for the 1980s and are consistent with those seen in F. van der Tak et al. (1999, Icarus142, 125-147). The most prominent features are a pair of brightness enhancements just inside the edges of the Equatorial Zone.The rings do not show the east-west asymmetry seen in our previous epoch, perhaps indicative of a viewing angle effect on the scattering properties of the rings. The radial trend in brightness in the ansae is generally consistent with that expected from optical depth variations and increasing distance from the source of scattered light. In particular the increased optical depth towards the center of the C ring is evident. Azimuthal variation in brightness in the C ring shows the forward scattering expected of Mie scattering. By contrast, the A and B rings show little or no azimuthal variation.We present Monte Carlo simulations of the ring brightness under the assumptions of isotropic and Mie scattering. These are the first synthetic maps of Saturn which can be directly compared to the images we obtained. Neither model fits all the data well. However, a hybrid model combining isotropic and Mie scattering does fit well. We interpret the consistency with isotropic scattering in the outer rings as an indication that near-field effects may be important. This in turn implies geometrically thin rings, as predicted by dynamical simulations of these rings.  相似文献   

10.
Jupiter's eastward jet at 24° N, which formerly had the fastest winds on the planet, has maintained a less extreme speed of ∼135 m/s since 1991, carrying a series of long-lived vortices at 125 m/s. In 2002-2003, as the albedo of the adjacent North Temperate Belt increased, the tracks of the vortices accelerated slightly, and they had disappeared by 2005. In 2005, small tracers had a mean speed of 146.4 (±0.9) m/s, significantly faster than the previous mean speed of the jet, suggesting that the jet peak itself has accelerated at cloud-top level, and that the jet is beginning to return to the super-fast state. These changes may resemble the even greater transformations occurring in the equatorial jet of Saturn.  相似文献   

11.
Observations suggest that moist convection plays an important role in the large-scale dynamics of Jupiter's and Saturn's atmospheres. Here we use a reduced-gravity quasigeostrophic model, with a parameterization of moist convection that is based on observations, to study the interaction between moist convection and zonal jets on Jupiter and Saturn. Stable jets with approximately the same width and strength as observations are generated in the model. The observed zonal jets violate the barotropic stability criterion but the modeled jets do so only if the flow in the deep underlying layer is westward. The model results suggest that a length scale and a velocity scale associated with moist convection control the width and strength of the jets. The length scale and velocity scale offer a possible explanation of why the jets of Saturn are stronger and wider than those of Jupiter.  相似文献   

12.
13.
Using the sequence of 70-day continuum-band (751 nm) images from the Cassini Imaging Science System (ISS), we record over 500 compact oval spots and study their relation to the large-scale motions. The ∼100 spots whose vorticity could be measured—the large spots in most cases—were all anticyclonic. We exclude cyclonic features (chaotic regions) because they do not have a compact oval shape, but we do record their interactions with spots. We distinguish probable convective storms from other spots because they appear suddenly, grow rapidly, and are much brighter than their surroundings. The distribution of lifetimes for spots that appeared and disappeared during the 70-day period follows a decaying exponential with time constant (mean lifetime) of 3.5 days for probable convective storms and 16.8 days for all other spots. Extrapolating the exponential beyond 70 days seriously underestimates the number of spots that existed for the entire 70-day period. This and other evidences (size, shape, distribution in latitude) suggest that these long-lived spots with lifetime larger than 70 days are from a separate population. The zonal wind profile obtained manually by tracking individual features (this study) agrees with that obtained automatically by correlating brightness variations in narrow latitude bands (Porco et al., 2003). Some westward jets have developed more curvature and some have developed less curvature since Voyager times, but the number of westward jets that violate the barotropic stability criterion is about the same. In the northern hemisphere the number of spots is greatest at the latitudes of the westward jets, which are the most unstable regions according to the barotropic stability criterion. During the 70-day observation period the Great Red Spot (GRS) absorbed nine westward-moving spots that originated in the South Equatorial Belt (SEB), where most of the probable convective storms originate. Although the probable convective storms do not directly transform themselves into westward-moving spots, their common origin in the SEB suggests that moist convection and the westward jet compose a system that has maintained the GRS over its long lifetime.  相似文献   

14.
R.J Sault  Chermelle Engel 《Icarus》2004,168(2):336-343
We present a technique for creating a longitude-resolved image of Jupiter's thermal radio emission. The technique has been applied to VLA data taken on 25 January 1996 at a wavelength of 2 cm. A comparison with infrared data shows a good correlation between radio hot spots and the 5 μm hot spots seen on IRTF images. The brightest spot on the radio image is most likely the hot spot through which the Galileo probe entered Jupiter's atmosphere. We derived the ammonia abundance (= volume mixing ratio) in the hot spot, which is ∼3×10−5, about half that seen in longitude-averaged images of the NEB, or less than 1/3 of the longitude-averaged ammonia abundance in the EZ. This low ammonia abundance probably extends down to at least the 4 bar level.  相似文献   

15.
Gregory P. Smith  David Nash 《Icarus》2006,182(1):181-201
A box model sensitivity analysis was applied to output from a version of the 1-D JPL/Caltech KINETICS photochemistry-transport model of Jupiter's atmosphere. Results quantify the controlling chemical reaction parameters for the variety of observable hydrocarbons, and suggest changes to explore and new observations and rate measurements to pursue. High sensitivities are found to photolysis steps and to several hydrogen atom recombination steps and product branches. Complexity ranges from the relatively simple scheme seen for the methyl radical, to the rich variety of reactions tested by diacetylene.  相似文献   

16.
We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (∼15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined (4πI1550-1620 Å/4πI1030-1150 Å) which varied by approximately a factor of 6. The FUV color ratio (4πI1550-1620 Å/4πI1230-1300 Å) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B ) as composed of an allowed direct excitation component (X ) and an optically forbidden component (X followed by the cascade transition ). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar cap, limb and auroral oval observations. We examine a long time base of Galileo Ultraviolet Spectrometer color ratios from the standard mission (1996-1998) and compare them to Cassini UVIS, HST, and International Ultraviolet Explorer (IUE) observations.  相似文献   

17.
We have determined the following upper limits for the mole fraction of hydrogen halides in Jupiter's atmosphere from Cassini/CIRS observations: [HF]<2.7×10−11, [HCl]<2.3×10−9, [HBr]<1.0×10−9, [HI]<7.6×10−9. These limits are smaller than solar composition for HF and HCl, and support the halogens' condensation in ammonium salts predicted by thermochemical models for the upper jovian troposphere.  相似文献   

18.
通过把从光球辐射出来的连续谱能量分成大量的光子包,然后用MonteCarlo方法跟踪这些光子包从光球向超新星包层外运动的过程,这一方法能很好地解决超新星的光谱拟合中的谱线覆盖问题,由于同时编制了用于构造超新星包层中的密度结构和丰度分布的程序,以及大量的用于比较观测和理论拟合的绘图和支持程序,使我们的MonteCarlo光谱拟合软件包能够很好地运用于超新星的早期光谱研究。本文给出了SN1993J在1993年4月13日的观测光谱的运行实例。  相似文献   

19.
We report laboratory experiments and modeling calculations investigating the effect of a hydrocarbon coating on ammonia ice spectral signatures. Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in areas of strong vertical transport, indicating a short lifetime for the signature of ammonia absorption on condensed ammonia particles [Baines, K.H., Carlson, R.W., Kamp, L.W., 2002. Icarus 159, 74-94]. Current literature has suggested coating of ammonia ice particles by a hydrocarbon haze as a possible explanation for this paradox. The work presented here supports the inference of a coating effect that can alter or suppress ammonia absorption features. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by reflection-absorption infrared spectroscopy. We have observed the effects on the ammonia ice absorption features near 3 and 9 μm with coverage by thin layers of hydrocarbons. Modeling calculations of these multilayer thin films assist in the interpretation of the experimental results and reveal the important role of optical interference in altering the aforementioned ammonia spectral features. Mie and T-matrix scattering calculations demonstrate analogous effects for ammonia ice particles and investigate the relative effects of ammonia ice particle size, shape, and coating layer thickness on the ice particle spectral signatures.  相似文献   

20.
The Cassini-Huygens spacecraft flew by Jupiter on December 30, 2000. The instruments aboard the spacecraft started making scientific observations three months earlier. Joint, collaborative observations were carried out with the teams of other spacecraft, notably Galileo, and with Earth-based observers. An operational overview of the flyby is presented and attention drawn to contributions of the eleven papers of this series which follow. Prime achievements of this campaign have been to better define the present state of fundamental elements of the jovian system, confirming many previously tentative conclusions. Particularly noteworthy is that the interactions between the solar wind and the jovian magnetosphere have been explored far deeper than before, along with the link to the morphology and dynamics of the jovian aurora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号