首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5–30 μm spectrum of Comet P/Halley is modelled for various grain compositions on the basis of an observationally determined distribution of grain sizes. We compute the distribution function of grain temperatures and fluxes arising from (1) a mineral grain model, and (2) an organic grain model comprised of a diatom/POM mixture. The organic/POM model yields excellent accord with the cometary observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Recent observations of Halley's Comet show a broad absorption band centred at 3.4 μm and which can be explained on the basis of a bacterial grain model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
VJHK measurements of J6 Himalia and S9 Phoebe, using the new NASA IRTF telescope, show that these objects have carbonaceous chondritic type colors in the 0.5- to 2.2-μm region. For Phoebe, this is in contrast to the JHK colors published by Cruikshank (1980), which indicated that the satellite's surface was unlike the material found on asteroids and on the dark side of Iapetus. J6 is known to have a low albedo from thermal infrared studies (Cruikshank, 1977), and the new VJHK observations of S9 imply that it also has a low albedo. The H and K reflectances of S9 are slightly lower than those of J6, suggesting some slight difference in surface composition or a contamination by foreign material. The conjectured low albedo of S9 can be tested with measurements in the thermal infrared.  相似文献   

4.
The expected emission features from an ensemble of naturally-occurring aromatic molecules is shown to be in satisfactory agreement with the emission properties of `PAH molecules' associated with planetary nebulae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
W.M. Grundy  B. Schmitt  E. Quirico 《Icarus》2002,155(2):486-496
New infrared absorption coefficient spectra of pure methane ice I were measured at temperatures between 30 and 90 K, over wavelengths from 0.7 to 5 μm, along with spectra of methane ice II at 20 K and liquid methane at 93 K. The spectra were derived from transmission measurements through monocrystalline samples grown in a series of closed cells having interior dimensions ranging from 100 μm to 1 cm. The thicker samples permitted measurement of extremely weak absorption bands, with absorption coefficients as small as 0.003 cm−1. We report 14 new absorption bands, which we tentatively assign to specific vibrational transitions. Two of the new bands are attributed to CH3D. Measurements of the weaker CH4 bands are particularly needed for interpreting spectral observations of Pluto and Triton, where a number of weak CH4-ice absorption bands have been observed. The data presented in this paper complement studies of spectral transmission by thin films of methane ice, which are most suitable for measuring the stronger absorption bands. Temperature-dependent spectral features revealed by the new data offer the opportunity to determine CH4-ice temperatures remotely, via near-infrared reflectance spectroscopy. This approach could prove particularly valuable for future spacecraft exploration of Pluto.  相似文献   

6.
From 5 μm high-spatial-resolution images of Jupiter, flux-frequency histograms of the equatorial region show a trimodal distribution of brightness temperatures. Combined with limbdarkening measurements, a three-layer cloud model for Jupiter is developed. The highest, coldest clouds, apparently homogeneous and displaying relatively little limb darkening, cover the zones. These clouds are not present over the belts, allowing observational access to deeper regions. The belts appear heterogeneous: small, localized hot areas show enhanced limb darkening, while much of the belt is distinctly cooler and exhibits shallower limb darkening. These belt properties can be explained by a cool emitting layer superposed upon a hot, dense cloud deck.  相似文献   

7.
Using 2 pinhole photometers the intensity of the undisturbed photosphere was recorded simultaneously in 6 and in 4 wavelength regions. The rms value of the intensity variation in each of the 10 wavelength regions decreases slightly with increasing value of the heliocentric angle; this result confirms recent observations by other authors and supports the critique of the results given by Edmonds (1964).We report the detection of a secondary maximum in the wavelength dependence of the intensity variation at 1.5 m.  相似文献   

8.
An infrared solar spectrum observed by ground-based telescopes is seriously affected by the background radiation both from the telescope and sky, relative to the visible wavelengths. Its accuracy is also influenced by the spectral resolution of the Fourier transform spectrometer. In the paper, we developed a CO2 gas cell and installed it in the sample compartment to calibrate the spectral resolution of the Bruker IFS-125HR at infrared wavelengths. The measured spectral resolution is 0...  相似文献   

9.
The diffuse radiation in the upward direction at the top and at an internal level of an inhomogeneous atmosphere is computed at =0.40 m. The surface is assumed to reflect light in accordance with a hybrid mode of a diffuse and specular reflector. The objective is to estimate the effect of underlying surface characteristics in terms of the diffuse radiation field. By making use of these results, accuracy in monitoring the atmospheric aerosols would be increased for the use of remote sensing satellite techniques. Junge power lawv *=3 is adopted for the size distribution of aerosols (1963), while the data given by McClatchyet al. (1971) is used for the number density of aerosols with height distribution. It is noted from the computations that the diffuse reflection radiation is affected by the surface characteristics, even if the albedo of the surface is a fixed constant and very small.On leave from the Meterological Research Institute, Tokyo, Japan.bl]References  相似文献   

10.
K.M. Merrill 《Icarus》1974,23(4):566-567
Spectrophotometry of Comet Kohoutek (1973f) covering the wavelength range 8–13 μm is presented. The spectral shape of the derived flux excess above a blackbody closely resembles that seen in circumstellar and interstellar dust and generally attributed to metallic silicates.  相似文献   

11.
We present evidence for a correlation between features observed in simultaneous infrared (8 to 14 μm) and ultraviolet (0.36 μm) images obtained during Venus' 1975 and 1977 apparitions. The sense of the observed correlation is such that bright uv markings correspond to bright (warm) ir features, and similarly, dark uv markings correspond to dark (cool) ir features.  相似文献   

12.
The potential of mid-infrared imaging, at a resolution of 0.5 or better, as a powerful tool in unravelling the complex environments in the vicinity of active galactic nuclei is discussed in the light of new data on the Seyfert nucleus in NGC 1068. In particular, we examine the growing body of evidence that the extinction of the broad-line region in NGC 1068 has its origins in an extended molecular disk and is the result of obscuration at 100 pc from the AGN.  相似文献   

13.
《Icarus》1987,70(1):1-12
An array spectrometer was used on the nights of 1985 May 30–June 1 to observe the disks of Uranus and Neptune in the spectral regions 7–14 and 17–23 μm with effective resolution elements ranging from 0.23 to 0.87 μm. In the long-wavelength region, the spectra are relatively smooth with the broad S(1) H2 collision-induced rotation line showing strong emission for Neptune. In the short-wavelength spectrum of Uranus, an emission feature attributable to C2H2 with a maximum stratospheric mixing ratio of 9 × 10−9 is apparent. An upper limit of 2 × 10−8 is placed on the maximum stratospheric mixing ratio of C2H6. The spectrum of Uranus is otherwise smooth and quantitatively consistent with the opacity provided by H2 collision-induced absorption and spectrally continuous stratospheric emission, as would be produced by aerosols. Upper limits to detecting the planet near 8 μm indicate a CH4 stratospheric mixing ratio of 1 × 10−5 or less, below a value consistent with saturation equilibrium at the temperature minimum. In the short-wavelength spectrum of Neptune, strong emission features of CH4 and C2H6 are evident and are consistent with local saturation equilibrium with maximum stratospheric mixing ratios of 0.02 and 6 × 10−6, respectively. Emission at 8–10 μm is most consistent with a [CH3D]/[CH4] volume abundance ratio of 5 × 10−5. The spectrum of Neptune near 13.5 μm is consistent with emission by stratospheric C2H2 in local saturation equilibrium and a maximum mixing ratio of 9 × 10−7. Radiance detected near 10.5 μm could be attributed to stratospheric C2H4 emission for a maximum mixing ratio of approximately 3 × 10−9. Quantitative results are considered preliminary, as some absolute radiance differences are noted with respect to earlier observations with discrete filters.  相似文献   

14.
We present 9.7 and 11.8 m narrow band (/=10%) images of three carbon (C-) rich proto-planetary nebulae with an unusual 21 m feature: IRAS 07134+ 1005, IRAS 22272+5435, and IRAS 04296+3429. The images were taken at UKIRT using the Berkeley/IGPP/LEA mid-IR camera. All three objects have a bipolar shape adding to the existing evidence that C-rich PPNe are by nature bipolar. Furthermore, we find the same bipolar morphology in a previous study of the C-rich, young planetary nebula, IRAS 21282+5050. We believe these four objects form an evolutionary sequence which links the C-rich asymptotic giant branch (AGB) stars with the C-rich planetary nebulae (PNe). From this evolutionary sequence, we conclude that bipolarity in C-rich PNe begins on the AGB and that the dynamical ages of these PPNe are in fair agreement with theoretical ages for a 0.6 M hydrogen burning core star.  相似文献   

15.
Dale P. Cruikshank 《Icarus》1980,41(2):240-245
The reflectance spectrum of Io is presented from 2.8 to 5.2 μm, extending the earlier results of D. P. Cruikshank, T. J. Jones, and C. B. Pilcher (1978, Astrophys. J. 225, L89–L92), and demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 μm. Laboratory spectra of nitrates and carborates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on the recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds as reported in a companion paper (F. P. Fanale, R. H. Brown, D. P. Cruikshank, and R. N. Clark, 1979, Nature280, 761–763).  相似文献   

16.
A new high photometric precision reflectance spectrum of Saturn's rings covering the spectral region 0.65 to 2.5-μm is presented and three previously unreported absorption features at 1.25, 0.85, and probably 1.04 μm are identified. The 1.25- and 1.04-μm absorptions are due to water ice. The 0.85-μm feature may be due to a combination of 0.81- and 0.90-μm ice absorptions but this feature appears too strong relative to the 1.04-μm band to be completely explained by weater ice. Another possibility is that the 0.85-μm band is due to Fe3+-bearing minerals in an ice-mineral mixture. This explanation could also account for the drop in the visible and ultraviolet reflectance and the rise in reflectance around 3.6 μm. Finally, a composite spectrum from 0.325 to 4.08 μm is presented which will be useful for future analysis and laboratory studies.  相似文献   

17.
R.W. Russell  B.T. Soifer 《Icarus》1977,30(2):282-285
Moderate-resolution spectrophotometry (Δλ/λ~0.015) has shown the effects of known atmospheric constituents (NH3, CH4, C2H6) on the 5–8 μm spectrum of Jupiter. Broadband observations of Saturn at 6.5 μm are also reported.  相似文献   

18.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

19.
The infrared spectrum of the galactic centre source GC-IRS 7 over the 2.9–3.9 μm waveband is interpreted as strong evidence for bacterial grains. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Stéphane Erard  Wendy Calvin 《Icarus》1997,130(2):449-460
About 15 areas were observed in the equatorial regions of Mars by the infrared spectrometers IRS (Mariner 6 and 7) and ISM (Phobos-2). The comparison between the spectra shows a remarkable consistency between two data sets acquired 20 years apart and calibrated independently. This similarity demonstrates the accuracy of ISM calibration above 2 μm, except for a possible stray light contribution above 2.6 μm, on the order of ∼1–2% of the solar flux at 2.7 μm. Most differences in spectral shapes are related to differences in spectral/spatial resolution and viewing geometries. No important variation in surface properties is detected, except for a spot in southern Arabia Terra which has a much deeper hydration feature in IRS spectra; differences in viewing geometries and spatial resolutions do not seem to account for this difference that could result from shifting or dehydration of surface materials. Composite spectra of several types of bright and dark materials are computed by modeling the thermal emission and are completed with telescopic spectra in the visible range. Modeled reflectance in the 3.0–5.7 μm range is consistent with basalts and palagonites. The bright regions and analog palagonite spectra are different from hematite in this range, but resemble several phyllosilicates. We infer that (1) although hematite dominates the spectra in the 0.4- to 2.5-μm range, the silicate-clay host is spectrally active beyond 3 μm and can be identified from this domain; (2) phyllosilicates such as montmorillonite or smectite may be abundant components of the martian soils, although the domain below 3 μm lacks the characteristic features of the most usual terrestrial clay minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号