首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mineralogy of a planetary surface is a diagnostic product of its formation and geologic evolution. Global assessment of lunar mineralogy at high spatial resolution has been a long standing goal of lunar exploration. Currently, the only global data available for such study is multispectral imagery from the Clementine mission. We use the detailed compositional, petrographic, and spectroscopic data of lunar soils produced by the Lunar Soil Characterization Consortium to explore the use of multispectral imaging as a diagnostic tool. We compare several statistically optimized formulations of links between spectral and mineral parameters and apply them to Clementine UV-VIS data. The most reliable results are for estimations of pyroxene abundance and maturity parameters (agglutinate abundance, Is/FeO). Estimations of different pyroxene composition (low-Ca versus high-Ca) appear good in a relative sense, but absolute values are limited by residual wavelength dependent Clementine photometric calibrations. Since the signal-to-noise of Clementine multispectral data is good at the 1-km scale, almost any combination of parameters that capture inherent spectral variance can provide spatially coherent maps, although the parameters may not actually be directly related to composition. Clementine estimates are useful for identifying scientific or exploration targets for imaging spectrometer sensors of the next generation that are specifically designed to characterize mineralogy.  相似文献   

2.
From the Clementine UVVIS imagery of the lunar surface, the abundance of agglutinates in the lunar regolith and their composition in terms of FeO and Al2O3 oxides have been predicted. Data on the spectral, chemical, and mineralogic measurements of about 30 lunar soil samples from the Lunar Samples Characterization Consortium (LSCC) collection were used. The fulfilled prognosis confirms that the mare agglutinates are enriched in Al2O3 and depleted of FeO, while the highland agglutinates are depleted of Al2O3 and enriched in FeO. This behavior can be caused by the global transport of the lunar surface material induced by cosmogenic factors.  相似文献   

3.
This paper presents an updated stratigraphical and compositional study of the exposed maria within the Imbrium basin on the Moon. Clementine multispectral data were employed to derive TiO2 and FeO wt% abundance estimates of potentially distinct basaltic flows. Additionally, NASA Lunar Orbiter images were used to estimate flow ages using crater count statistics. Mare Imbrium shows evidence of a complex suite of low to high-Ti basaltic lava units infilling the basin over an 800 million year timescale. More than a third (37%) of identified mare basalts were found to contain 1-3 wt% TiO2. Two other major mare lithological units (representing about 25% of the surface each) show TiO2 values between 3-5 and 7-9 wt%. The dominant fraction (55%) of the sampled maria contain FeO between 16 and 18 wt%, followed by 27% of maria having 18-20 wt% and the remaining 18%, 14-16 wt% FeO. A crater frequency count (for diameters >500 m) shows that in three quarters of the sampled mare crater counts range between 3.5 and 5.5×10−2 per km2, which translates, according to a lunar cratering model chronology, into estimated emplacement ages between ∼3.3 and 2.5 Ga. A compositional convergence trend between the variations of iron and titanium oxides was identified, in particular for materials with TiO2 and FeO content broadly above 5 and 17 wt%, respectively, suggesting a related petrogenesis and evolution. According to these findings, three major periods of mare infill are exposed in the Imbrium basin; despite each period showing a range of basaltic compositions (classified according to their TiO2 content), it is apparent that, at least within these local geological settings, the igneous petrogenesis generally evolved through time towards more TiO2- and FeO-rich melts.  相似文献   

4.
Abstract— The lunar soil characterization consortium, a group of lunar‐sample and remote‐sensing scientists, has undertaken the extensive task of characterization of the finest fractions of lunar soils, with respect to their mineralogical and chemical makeup. These compositional data form the basis for integration and modeling with the reflectance spectra of these same soil fractions. This endeavor is aimed at deciphering the effects of space weathering of soils on airless bodies with quantification of the links between remotely sensed reflectance spectra and composition. A beneficial byproduct is an understanding of the complexities involved in the formation of lunar soil. Several significant findings have been documented in the study of the <45 μm size fractions of selected Apollo 17 mare soils. As grain size decreases, the abundance of agglutinitic glass increases, as does the plagioclase, whereas the other minerals decrease. The composition of the agglutinitic glass is relatively constant for all size fractions, being more feldspathic than any of the bulk compositions; notably, TiO2 is substantially depleted in the agglutinitic glass. However, as grain size decreases, the bulk composition of each size fraction continuously changes, becoming more Al‐rich and Fe‐poor, and approaches the composition of the agglutinitic glasses. Between the smallest grain sizes (10–20 and < 10 μm), the IS/FeO values (amount of total iron present as nanophase Fe0) increase by greater than 100% (>2x), whereas the abundance of agglutinitic glass increases by only 10–15%. This is evidence for a large contribution from surface‐correlated nanophase Fe0 to the IS/FeO values, particularly in the <10 μm size fraction. The surface nanophase Fe0 is present largely as vapor‐deposited patinas on the surfaces of almost every particle of the mature soils, and to a lesser degree for the immature soils (Keller et al., 1999a). It is reasoned that the vapor‐deposited patinas may have far greater effects upon reflectance spectra of mare soils than the agglutinitic Fe0.  相似文献   

5.
Rock 12039 belongs to the olivine-depleted group of magmatic rocks characterized by normative and modal SiO2, absence or very low abundance of olivine, and high FeO/(FeO + MgO), Ti/Cr, and CaO/MgO ratios. Clinopyroxenes in this rock show a complex, essentially continuous, compositional zonation from augite cores through ferroaugite to ferrohedenbergite with an abrupt discontinuity at the pyroxferroite contact and, thus, are different from pyroxene in most other Apollo 12 rocks. Two grains contain thin subcalcic pigeonite zones. Texture, presence of very fine (< 1 μm) exsolution lamallae, and pyroxene zoning indicate a relatively rapid cooling history and pronounced in situ chemical fractionation. Rock 12039, on the basis of mineralogy and bulk composition, is the most highly differentiated member of the olivine-depleted basalt group  相似文献   

6.
Abstract— Here we report the petrography, mineralogy, and trace element geochemistry of the Dhofar 1180 lunar meteorite. Dhofar 1180 is predominantly composed of fine‐grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe‐rich. The Ti/[Ti+Cr]‐Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low‐Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last‐stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE‐enriched (La 18 × CI, Sm 14 × CI) pattern with a small positive Eu anomaly (Eu 15 × CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin.  相似文献   

7.
Z.C. Ling  Alian Wang 《Icarus》2011,211(1):101-113
Laser Raman spectroscopy is used to investigate four lunar soils, focusing on mineralogy of grains of <45 μm size. Apollo samples 14163, 15271, 67511, and 71501 were selected as endmembers to study, based on their soil chemistry, maturity, and sample locations. Typical Raman spectral features for major and minor lunar minerals are discussed on the basis of major vibrational modes. We used the Raman peak shift to calculate Mg/(Mg + Fe + Ca) and Ca/(Mg + Fe + Ca) for pyroxene and Mg/(Mg + Fe) for olivine, and thus obtained the compositional distributions of these two minerals in each of the four lunar soils. Classification of feldspar grains was made based on recognition of their Raman patterns. A Raman point-counting procedure was applied to derive mineral modes of the soils, and these are found to be consistent with published modal analysis of these soils. The compositional distributions of pyroxene and olivine grains in each soil sample, as well as the mineral modes, reflect characteristics of the main source materials for these soils. Raman patterns and peak positions also reflect shock effects on plagioclase and quartz, found in 14163.  相似文献   

8.
Abstract— We studied crystallization trends of pyroxene and spinel in four Antarctic meteorites known to be derived from mare regions of the Moon: Y-793169 and A-881757 (YA meteorites) are unbrecciated igneous basalts, EET 87521 is a fragmental breccia, and Y-793274 is a regolith breccia. All have relatively low bulkrock TiO2 content, and the YA meteorites are uncommonly ancient. Our electron probe microanalysis (EPMA) data indicate that the YA meteorites and the dominant mare components of Y-793274 and EET 87521 conform to a general trend for Ti-poor (low-Ti and very low-Ti) mare basalts. Their pyroxenes show a strong correlation between Fe/(Fe + Mg) (Fe#) and Ti/(Ti + Cr) (Ti#), both ratios typically increasing from core to rim. These trends presumably reflect local crystallization differentiation of interstitial melt. Previous studies (M. J. Drake and coworkers) have suggested that the detailed configurations of such Fe# vs. Ti# trends may reflect the bulk TiO2 contents of the parent magmas (basalts). As a more systematic approach to this problem, we plot bulk-rock TiO2 as a function of the Fe# = 0.50 intercept of each rock's pyroxene Fe# vs. Ti# trend. We call this intercept the Fe#-normalized Ti#. Based on our data for EET 87521, the YA meteorites, and Apollo 12 basalts 12031 and 12064, plus literature data for several other Ti-poor mare basalts, we find a strong correlation between Fe#-normalized Ti# and the bulk TiO2 content of the parent basalt. This correlation confirms that fragmental breccia EET 87521 is nearly pure very low-Ti (VLT) basalt and that the YA meteorites, for which bulk-rock TiO2 results scatter due to unusually coarse grain size (A-881757) or scarcity of available sample (Y-793169), are pieces of an uncommonly Ti-poor, but not quite VLT, variety of low-Ti mare basalt. Extrapolating from this correlation, the dominant mare component of regolith breccia Y-793274 is probably of VLT affinity. Besides the normal mare pyroxene trend of strong correlation between Fe# and Ti#, Y-793274 includes two additional pyroxene compositional trends, both showing a wide range of Ti# despite relatively constant (and low, by mare standards) Fe#. The most magnesian of these trends consists of a single clast with a mode of orthopyroxene + MgO-rich ilmenite. These two trends are of uncertain origin. Possibly one or both represents the highland component of this regolith breccia, although, unlike most highland pyroxenes, these appear relatively unaltered by impact brecciation and metamorphism. Compositions of spinels in the coarse-grained A-881757 show an extraordinary distribution: chromite and ulvöspinel components vary among grains but are nearly constant within grains. Despite its old age and unusually coarse grain sizes, mineralogical evidence (i.e., heterogeneity within both pyroxene and spinel; typical pyroxene exsolution scale very coarse by mare standards but exceeded by the pyroxenes of EET 87521 and Y-793274) indicates that A-881757 was cooled only slightly more slowly than typical mare basalts and may have formed near the center of an uncommonly thick lava flow. Both of the VLT basaltic lunar meteorite breccias, EET 87521 and Y-793274, are composed dominantly of pyroxenes with exsolution coarser than normal for mare basalts. Possibly VLT basalt flows tend to be systematically thicker, and thus more slowly cooled, than more Ti-rich flows.  相似文献   

9.
The titanium contents of lunar mare basalts   总被引:1,自引:0,他引:1  
Abstract— Lunar mare basalt sample data suggest that there is a bimodal distribution of TiO2 concentrations. Using a refined technique for remote determination of TiO2, we find that the maria actually vary continuously from low to high values. The reason for the discrepancy is that the nine lunar sample return missions were not situated near intermediate basalt regions. Moreover, maria with 2–4 wt% TiO2 are most abundant, and abundance decreases with increasing TiO2. Maria surfaces with TiO2 >5 wt% constitute only 20% of the maria. Although impact mixing of basalts with differing Ti concentrations may smear out the distribution and decrease the abundance of high‐Ti basalts, the distribution of basalt Ti contents probably reflects both the relative abundances of ilmenite‐free and ilmenite‐bearing mantle sources. This distribution is consistent with models of the formation of mare source regions as cumulates from the lunar magma ocean.  相似文献   

10.
In this study we examine the spectral and morphometric properties of the four important lunar mare dome fields near Cauchy, Arago, Hortensius, and Milichius. We utilize Clementine UV-vis multispectral data to examine the soil composition of the mare domes while employing telescopic CCD imagery to compute digital elevation maps in order to determine their morphometric properties, especially flank slope, height, and edifice volume. After reviewing previous attempts to determine topographic data for lunar domes, we propose an image-based 3D reconstruction approach which is based on a combination of photoclinometry and shape from shading. Accordingly, we devise a classification scheme for lunar mare domes which is based on a principal component analysis of the determined spectral and morphometric features. For the effusive mare domes of the examined fields we establish four classes, two of which are further divided into two subclasses, respectively, where each class represents distinct combinations of spectral and morphometric dome properties. As a general trend, shallow and steep domes formed out of low-TiO2 basalts are observed in the Hortensius and Milichius dome fields, while the domes near Cauchy and Arago that consist of high-TiO2 basalts are all very shallow. The intrusive domes of our data set cover a wide continuous range of spectral and morphometric quantities, generally characterized by larger diameters and shallower flank slopes than effusive domes. A comparison to effusive and intrusive mare domes in other lunar regions, highland domes, and lunar cones has shown that the examined four mare dome fields display such a richness in spectral properties and 3D dome shape that the established representation remains valid in a more global context. Furthermore, we estimate the physical parameters of dome formation for the examined domes based on a rheologic model. Each class of effusive domes defined in terms of spectral and morphometric properties is characterized by its specific range of values for lava viscosity, effusion rate, and duration of the effusion process. For our data set we report lava viscosities between about 102 and , effusion rates between 25 and , and durations of the effusion process between three weeks and 18 years. Lava viscosity decreases with increasing R415/R750 spectral ratio and thus TiO2 content; however, the correlation is not strong, implying an important influence of further parameters like effusion temperature on lava viscosity.  相似文献   

11.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   

12.
Abstract— The Calcalong Creek lunar meteorite is a polymict breccia that contains clasts of both highlands and mare affinity. Reported here is a compilation of major, minor, and trace element data for bulk, clast, and matrix samples determined by instrumental neutron activation analysis (INAA). Petrographic information and results of electron microprobe analyses are included. The relationship of Calcalong Creek to lunar terranes, especially the Procellarum KREEP Terrane and Feldspathic Highlands Terrane, is established by the abundance of thorium, incompatible elements and their KREEP‐like CI chondrite normalized pattern, FeO, and TiO2. The highlands component is associated with Apollo 15 KREEP basalt but represents a variant of the KREEP‐derived material widely found on the moon. Sources of Calcalong Creek's mare basalt components may be related to low‐titanium (LT) and very low‐titanium (VLT) basalts seen in other lunar meteorites but do not sample the same source. The content of some components of Calcalong Creek are found to display similarities to the composition of the South Pole‐Aitken Terrane. What appear to be VLT relationships could represent new high aluminum, low titanium basalt types.  相似文献   

13.
We develop a method based on the samples from Apollo and Luna landing sites to determine lunar TiO2 content with Chang’E-1 interference imaging spectrometer (IIM) imagery. By analyzing the nonlinear relationship between the optical and compositional parameters of lunar soil samples, the method employs two Support Vector Machines (SVMs) to estimate the titanium abundance of the lunar surface. Developed with the soil compositions of the Apollo and Luna sample-return stations, the RMS (root mean square) error of our method is 0.24 wt% TiO2, and the correlation coefficient of the TiO2 values and our predicted ones is 99.72 %. Compared with the other 3 models, the method proposed in this paper exhibits a good performance for determining the chemical composition of the lunar surface. TiO2 maps of Sinus Iridum, part of the Marius Hills plateau, and part of Mare Smythii are produced using our method, which could be useful for future lunar missions.  相似文献   

14.
Abstract— Antarctic meteorite QUE 94201 is a new basaltic shergottite that is mainly composed of subequal amounts of maskelynite and pyroxenes (pigeonite and augite) plus abundant merrillite and accessory phases. It also contains impact melt. Complex zoning patterns in QUE 94201 pyroxenes revealed by elemental map analyses using an electron microprobe suggest a crystallization sequence from Mg-rich pigeonite (En62Fss30Wog) to extremely Fe-rich pigeonite (En5Fs81Wo14) via {110} Mg-rich augite bands (En44Fs20Wo36) in a single crystal. These textures, along with the abundant plagioclase (maskelynite), indicates single-stage rapid cooling (>5 °C/year) of this rock from a supercooled magma. Transition from Mg-rich augite to Fe-rich pigeonite reflects the onset of plagioclase crystallization. Enrichment of late-stage phases in QUE 94201 implies crystallization from an evolved magma and suggests a different parent magma composition from the other basaltic shergottites. Lithology B of EETA79001 basaltic shergottite contains pyroxenes that show complex zoning with augite bands similar to those in QUE 94201 pyroxene, which suggests similar one-stage rapid cooling. Lithology B of EETA79001 also resembles QUE 94201 in its coarse-grained texture of silicates and its high abundance of maskelynite, although QUE 94201 probably crystallized from a more fractionated magma. We also note that some Apollo lunar mare basalts (e.g., 12020 and 12021) have similar mineralogy and petrology to QUE 94201, especially in pyroxene zoning. All these basaltic rocks with complex pyroxene zoning suggest rapid metastable crystallization from supercooled magmas.  相似文献   

15.
The lunar interior is comprised of two major petrological provinces: (1) an outer zone several hundred km thick which experienced partial melting and crystallization differentiation 4.4–4.6 b.y. ago to form the lunar crust together with an underlying complementary zone of ultramafic cumulates and residua, and (2) the primordial deep interior which was the source region for mare basalts (3.2–3.8 b.y.) and had previously been contaminated to varying degrees with highly fractionated material derived from the 4.4–4.6 b.y. differentiation event. In both major petrologic provinces, basaltic magmas have been produced by partial melting. The chemical characteristics and high-pressure phase relationships of these magmas can be used to constrain the bulk compositions of their respective source regions.Primitive low-Ti mare basalts (e.g., 12009, 12002, 15555 and Green Glass) possessing high normative olivine and high Mg and Cr contents, provide the most direct evidence upon the composition of the primordial deep lunar interior. This composition, as estimated on the basis of high pressure equilibria displayed by the above basalts, combined with other geochemical criteria, is found to consist of orthopyroxene + clinopyroxene + olivine with total pyroxenes > olivine, 100 MgO/(MgO + FeO) = 75–80, about 4% of CaO and Al2O3 and 2× chondritic abundances of REE, U and Th. This composition is similar to that of the earth's mantle except for a higher pyroxene/olivine ratio and lower 100 MgO/(MgO + FeO).The lunar crust is believed to have formed by plagioclase elutriation within a vast ocean of parental basaltic magma. The composition of the latter is found experimentally by removing liquidus plagioclase from the observed mean upper crust (gabbroic anorthosite) composition, until the resulting composition becomes multiply saturated with plagioclase and a ferromagnesian phase (olivine). This parental basaltic composition is almost identical with terrestrial oceanic tholeiites, except for partial depletion in the two most volatile components, Na2 and SiO2. Similarity between these two most abundant classes of lunar and terrestrial basaltic magmas strongly implies corresponding similarities between their source regions. The bulk composition of the outer 400 km of the Moon as constrained by the 4.6-4.4 b.y. parental basaltic magma is found to be peridotitic, with olivine > pyroxene, 100 MgO/ (MgO + FeO) 86, and about 2× chondritic abundances of Ca, Al and REE. The Moon thus appears to have a zoned structure, with the deep interior (below 400 km) possessing somewhat higher contents of FeO and SiO2 than the outer 400 km. This zoned model, derived exclusively on petrological grounds, provides a quantitative explanation of the Moon's mean density, moment of inertia and seismic velocity profile.The bulk composition of the entire Moon, thus obtained, is very similar to the pyrolite model composition for the Earth's mantle, except that the Moon is depleted in Na (and other volatile elements) and somewhat enriched in iron. The similarity in major element composition extends also to the abundances of REE, U and Th. These compositional similarities, combined with the identity in oxygen isotope ratios between the Moon and the Earth's mantle, are strongly suggestive of a common genetic relationship.  相似文献   

16.
We conducted spectral analysis of central region of the Mare Moscoviense area on the far side of the Moon using the Hyperspectral Imager (HySI) data from the Chandrayaan-1 mission in an effort to identify and map the major lithological units present in the area. Various spectral band parameters, namely, band curvature, band tilt and band strength have been used for lithological discrimination based on the nature of the spectral profile. These band parameters essentially measure the shape, position and strength of the absorption feature near 1000 nm arising due to electronic transition of Fe2+ in crystallographic sites of major rock forming silicates. Spectral band parameters have been used for generating rock type composite image. Based on spectral studies and rock type composite image as obtained using band parameters, five major compositional units have been identified: highland basin soils, ancient mature mare, highland contaminated mare, buried unit with abundant low-Ca pyroxene (LCP), and youngest mare unit. In the present study, a multispectral approach in the form of spectral band parameters has been adopted for analysing the HySI hyperspectral data from Chandrayaan-1 mission. Present study clearly shows that the spectral band parameters obtained using selected HySI channels could efficiently be used to discriminate and delineate the major litho-units present across the central part of Mare Moscoviense and the same approach can thus be used for lithological mapping of other parts of lunar surface using HySI data.  相似文献   

17.
In the context of sample evidence alone, the high-alumina (HA) basalts appear to be an unique, and rare variety of mare basalt. In addition to their distinct chemistry, radiometric dating reveals these basalts to be among the oldest sampled mare basalts. Yet, HA basalts were sampled by four missions spanning a lateral range of ∼2400 km, with ages demonstrating that aluminous volcanism lasted at least 1 billion years. This evidence suggests that HA basalts may be a widespread phenomenon on the Moon. Knowing the distribution of HA mare basalts on the lunar surface has significance for models of the origin and the evolution of the Lunar Magma Ocean. Surface exposures of HA basalts can be detected with compositional remote sensing data from Lunar Prospector Gamma Ray Spectrometer and Clementine. We searched the lunar surface for regions of interest (ROIs) that correspond to the intersection of three compositional constraints taken from values of sampled HA basalts: 12-18 wt% FeO, 1.5-5 wt% TiO2, and 0-4 ppm Th. We then determined the “true” (unobscured by regolith) composition of basalt units by analyzing the rims and proximal ejecta of small impacts (0.4-4 km in diameter) into the mare surface of these ROIs. This paper focuses on two ROIs that are the best candidates for sources of sampled HA basalts: Mare Fecunditatis, the landing site of Luna 16; and northern Mare Imbrium, hypothesized origin of the Apollo 14 HA basalts. We demonstrate our technique's ability for delineating discrete basalt units and determining which is the best compositional match to the HA basalts sampled by each mission. We identified two units in Mare Fecunditatis that spectrally resemble HA basalts, although only one unit (Iltm) is consistent with the compositional and relative age of the Luna 16 HA samples. Northern Mare Imbrium also reveals two units that are within the compositional constraints of HA basalts, with one (Iltm) best matching the composition of the basalts sampled by Apollo 14.  相似文献   

18.
We suggest a technique to determine the chemical and mineral composition of the lunar surface using artificial neural networks (ANNs). We demonstrate this powerful non-linear approach for prognosis of TiO2 abundance using Clementine UV-VIS mosaics and Lunar Soil Characterization Consortium data. The ANN technique allows one to study correlations between spectral characteristics of lunar soils and composition parameters without any restrictions on the character of these correlations. The advantage of this method in comparison with the traditional linear regression method and the Lucey et al. approaches is shown. The results obtained could be useful for the strategy of analyzing lunar data that will be acquired in incoming lunar missions especially in case of the Chandrayaan-1 and Lunar Reconnaissance Orbiter missions.  相似文献   

19.
Abstract— LaPaz Icefield (LAP) 02205, 02226, and 02224 are paired stones of a crystalline basaltic lunar meteorite with a low‐Ti (3.21–3.43% TiO2) low‐Al (9.93–10.45% Al2O3), and low‐K (0.11–0.12% K2O) composition. They consist mainly of zoned pyroxene and plagioclase grains, with minor ilmenite, spinel, and mesostasis regions. Large, possibly xenocrystic, forsteritic olivine grains (<3% by mode) contain small trapped multiphase melt inclusions. Accessory mineral and mesostasis composition shows that the samples have experienced residual melt crystallization with silica oversaturation and late‐stage liquid immiscibility. Our section of LAP 02224 has a vesicular fusion crust, implying that it was at one time located sufficiently close to the lunar surface environment to have accumulated solar‐wind‐implanted gases. The stones have a comparable major element composition and petrography to low‐Ti, low‐Al basalts collected at the Apollos 12 and 15 landing sites. However, the LAP stones also have an enriched REE bulk composition and are more ferroan (Mg numbers in the range of 31 to 35) than similar Apollo samples, suggesting that they represent members of a previously unsampled fractionated mare basalt suite that crystallized from a relatively evolved lunar melt.  相似文献   

20.
Abstract— The fine fraction of lunar soils (<45 μm) dominates the optical properties of the bulk soil. Definite trends can be seen in optical properties of size separates with decreasing particle size: diminished spectral contrast and a steeper continuum slope. These trends are related to space weathering processes and their affects on different size fractions. The finest fraction (defined here as the <10 μm fraction) appears to be enriched in weathering products relative to the larger size fractions, as would be expected for surface correlated processes. This <10 μm fraction tends to exhibit very little spectral contrast, often with no distinguishable ferrous iron absorption bands. Additionally, the finest fractions of highland soils are observed to have very different spectral properties than the equivalent fraction of mare soils when compared with larger size fractions. The spectra of the finest fraction of feldspathic soils flatten at longer wavelengths, whereas those of the finest fraction of basaltic soils continue to increase in a steep, almost linear fashion. This compositional distinction is due to differences in the total amount of nanophase iron that accumulates in space weathering products. Such ground‐truth information derived from the <10 μm fraction of lunar soils provides valuable insight into optical properties to be expected in other space weathering environments such as the asteroids and Mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号