首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titan's haze consists of long chain polymers of pure and N-mixed hydrocarbons (Coustenis et al., 1989, Icarus 80, 54-76, 1991, Icarus 89, 152-167). These polymers have regularly alternating (i.e., conjugated) double/single and triple/single bonds, which open either spontaneously (free aging) or under the action of some external factors (forced aging), the latter being very diverse, e.g., charging, photolysis, radiolysis, thermolysis, chemical effect of environment, etc. An essential of free aging was examined previously (Dimitrov and Bar-Nun, 2002, Icarus 156, 530-538). The main distinction between free and any forced aging is that both of them possess the same thermodynamics while different kinetics, the forced aging in any case being faster, proceeding in different pathways than the free aging. The more extensive is the list of the external effects and the more intensive they are, the faster and more variably the forced aging proceeds. In this paper we quantified the kinetics of forced aging, considering charging of Titan's aerosol population. It was found that forced aging proceeds approximately hundred times faster as compared to the free aging. Various physico-chemical properties of Titan's aerosol material, including coagulation coefficients, depending on particle size and medium conditions, were defined. The comparison of the aging rate, rate of sedimentation and rate of the particle increase proves that Titan's aerosol domain can be subdivided conditionally into two big subdomains. The upper one contains minor portion (<5%) of the total aerosol bulk, unannealed aerosol particles being fine and sticky. The lower subdomain contains the major portion (>95%) of aerosol bulk, which is completely aged, coarsely dispersed particles. We established the border between these subdomains at the altitude Z∼620 km.  相似文献   

2.
The chemistry leading to the formation of solid aerosols (tholins) in Titan's atmosphere is simulated by a capacitively coupled plasma in a N2-CH4 gas mixture. The solid grains are produced in volume directly in the gas phase and studied ex-situ by SEM imaging and by light scattering on clouds of particles. The scattered light properties depend on the physical properties of the particles (morphologies, size distribution), as well as on the phase angle and the wavelength of the light. The particles may be aggregated or agglomerated grains. The grains size distribution is studied as a function of plasma parameters such as initial methane concentration introduced into the discharge, gas flow, absorbed RF power and plasma duration. The average grain size increases when the amount of CH4 increases, when the gas flow decreases, and when the plasma duration increases up to a limit for each production condition.For all the samples, the absorption decreases with increasing wavelength in the visible domain. As usually found for irregular particles, the polarization phase curves have a bell-shaped positive branch and a shallow negative branch. The maximum of polarization (Pmax) increases when the average grain size decreases (sub-μm-sized grains). To obtain Pmax values within the range of those measured in Titan's atmosphere; the average grains diameter has to be smaller than 100 nm, in agreement with the space observations results. In the light-scattering experiment, the size of the agglomerates in the clouds is in the 40-80 μm range in equivalent diameter. As a consequence Pmax increases with decreasing wavelength due to the increasing absorption, in agreement with observations of Titan from outside the atmosphere.  相似文献   

3.
We investigate the chemical transition of simple molecules like C2H2 and HCN into aerosol particles in the context of Titan's atmosphere. Experiments that synthesize analogs (tholins) for these aerosols can help illuminate and constrain these polymerization mechanisms. Using information available from these experiments, we suggest chemical pathways that can link simple molecules to macromolecules, which will be the precursors to aerosol particles: polymers of acetylene and cyanoacetylene, polycyclic aromatics, polymers of HCN and other nitriles, and polyynes. Although our goal here is not to build a detailed kinetic model for this transition, we propose parameterizations to estimate the production rates of these macromolecules, their C/N and C/H ratios, and the loss of parent molecules (C2H2, HCN, HC3N and other nitriles, and C6H6) from the gas phase to the haze. We use a one-dimensional photochemical model of Titan's atmosphere to estimate the formation rate of precursor macromolecules. We find a production zone slightly lower than 200 km altitude with a total production rate of 4×10−14 g cm−2 s−1 and a C/N?4. These results are compared with experimental data, and to microphysical model requirements. The Cassini/Huygens mission will bring a detailed picture of the haze distribution and properties, which will be a great challenge for our understanding of these chemical processes.  相似文献   

4.
Titan's Snowline     
We show that the “snowline” altitude on Titan, above which the condensed nonideal methane-nitrogen phase is solid, is lower (∼14 km) near the equator than at high latitudes (∼19 km). This counterintuitive result derives from the thermodynamic behavior of the binary condensate. The snowline altitude is an operating constraint on future Titan missions where icing would pose a ceiling on atmospheric flight. These snowline altitudes are higher than likely topography, suggesting that optically bright regions on Titan are not due to veneering caused by methane frost deposition.  相似文献   

5.
Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and converted to heavier hydrocarbons irreversibly on a relatively short timescale of approximately 10-100 million years. Without the warming provided by CH4-generated hydrocarbon hazes in the stratosphere and the pressure induced opacity in the infrared, particularly by CH4-N2 and H2-N2 collisions in the troposphere, the atmosphere could be gradually reduced to as low as tens of millibar pressure. An understanding of the source-sink cycle of methane is thus crucial to the evolutionary history of Titan and its atmosphere. In this paper we propose that a complex photochemical-meteorological-hydrogeochemical cycle of methane operates on Titan. We further suggest that although photochemistry leads to the loss of methane from the atmosphere, conversion to a global ocean of ethane is unlikely. The behavior of methane in the troposphere and the surface, as measured by the Cassini-Huygens gas chromatograph mass spectrometer, together with evidence of cryovolcanism reported by the Cassini visual and infrared mapping spectrometer, represents a “methalogical” cycle on Titan, somewhat akin to the hydrological cycle on Earth. In the absence of net loss to the interior, it would represent a closed cycle. However, a source is still needed to replenish the methane lost to photolysis. A hydrogeochemical source deep in the interior of Titan holds promise. It is well known that in serpentinization, hydration of ultramafic silicates in terrestrial oceans produces H2(aq), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas. Appropriate geological, thermal, and pressure conditions could have existed in and below Titan's purported water-ammonia ocean for “low-temperature” serpentinization to occur in Titan's accretionary heating phase. On the other hand, impacts could trigger the process at high temperatures. In either instance, storage of methane as a stable clathrate-hydrate in Titan's interior for later release to the atmosphere is quite plausible. There is also some likelihood that the production of methane on Titan by serpentinization is a gradual and continuous on-going process.  相似文献   

6.
《Planetary and Space Science》2007,55(13):2010-2014
Since the discovery of the main composition of Titan's atmosphere, many laboratory experiments have been carried out to reproduce its chemical evolution, particularly the formation of organic haze particles found throughout this atmosphere. Some of these simulations have produced solid products—referred to as Titan's tholins—that are assumed to have properties similar to those of Titan's aerosols. In the present work, we focus on the possible isotopic fractionation of carbon during the processes involved in the formation of Titan's tholins. Initial 12C/13C isotopic ratios measured on tholins made in the laboratory using cold plasma discharges are presented. Measurements of isotopic enhancement in 13C (δ13C), both on tholins and on the initial gas mixture (N2:CH4 (98:2)) used to produce them do not show any clear deficit or enrichment in 13C relative to 12C in the lab-made tholins compared to the initial gas mixture. Preliminary data recovered from the Aerosol Collector Pyrolyzer (ACP) experiment of the Huygens probe suggests that Titan's aerosols may also be exempt of carbon isotopic enrichment. This observation creates possibilities for deeper analysis of ACP experiment data.  相似文献   

7.
Darrell F. Strobel 《Icarus》2008,193(2):588-594
The upper atmosphere of Titan is currently losing mass at a rate , by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH4 absorption. The hydrodynamic mass loss is essentially CH4 and H2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ∼185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of and , or some other combination with a higher H2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH4 and H2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].  相似文献   

8.
E. Lellouch  B. Schmitt  J.-G. Cuby 《Icarus》2004,168(1):209-214
We report on repeated mid-resolution (R∼2000) spectroscopic observations of Titan, acquired between November 2002 and January 2003 with ISAAC at the ESO/VLT and covering the 4.84-5.05 μm range. These observations, which sample four different positions of Titan around Saturn, clearly indicate a variability of the 5-μm continuum albedo, with Titan's geometric albedo decreasing by ∼40% from Titan's leading side to the trailing side. This Titan 5-μm “lightcurve” appears to be in phase with the other near-infrared lightcurves. This can be understood in terms of a surface model in which water ice coexists in minor and variable proportions (13-25%, if pure) with a second, dark, component.  相似文献   

9.
We review current understanding of Titan's surface, synthesizing a paradigm from Earth-based radar observations and near-infrared surface maps, together with reanalysis of Voyager data and results from published theoretical models. Based on these we suggest that Titan has a varied landscape with a variety of tectonic and erosive features indicative of geologic activity, and an impact crater population reflective of the dense atmosphere.  相似文献   

10.
We have developed a new photochemical model of Titan's atmosphere which includes all the important compounds and reactions in spherical geometry from the surface to 1240 km. Compared to the previous model of Yung et al. (1984, Astrophys. J. Suppl. 55, 465-506), the most significant recent change in the reactions used is the updated methane photodissociation scheme (Mordaunt et al. 1993, J. Chem. Phys. 98(3), 2054-2065). Moreover, the transfer of the solar radiation in the atmosphere and the photolysis rates have been calculated by using a Monte Carlo code. Finally, the eddy diffusion coefficient profile is adjusted in order to fit the mean vertical distribution of HCN retrieved from millimeter groundbased observations of Tanguy et al. (1990, Icarus, 85, 43-57) using new values for the boundary flux of atomic nitrogen (Strobel et al. 1992, Icarus 100, 512-526). We have run the model in both steady-state and diurnal modes, with 62 speices involved in 249 reactions. There is little difference between diurnal and steady-state results. Overall our results are in a closer agreement with the abundances inferred from the Voyager infrared measurements at the equator than the Yung et al. results. We find that the catalytic scheme for H recombination invoked by Yung et al. only slightly improves the model results and we conclude that this scheme is not essential to fit observations.  相似文献   

11.
During the descent of the Huygens probe in January 2005, its Descent Imager/Spectral Radiometer (DISR) will take the first close up images of Titan's surface. The shading imposed by the illumination of a planetary surface contains information on its topography. For planetary bodies without an optically thick atmosphere, the light can be assumed to stem from a point source. In this case, methods are available in order to estimate the shape of surface features from shading. The situation is quite different for Titan, as its atmosphere is optically thick at optical wavelengths. The sun is visible from the surface, but the illumination is dominated by diffuse radiance. In order to investigate the characteristics of shading under Titan's sky and to assess methods to retrieve the shape, different digital terrain models (DTMs) are used to simulate images according to different types of illumination. For an idealized DTM, the shape is retrieved from the shading in the simulated images. Deriving the shape from shading under Titan's sky using existing methods is only possible if the topography is relatively flat, i.e. in the absence of steep slopes.  相似文献   

12.
The recent measurements of the vertical distribution and optical properties of haze aerosols as well as of the absorption coefficients for methane at long paths and cold temperatures by the Huygens entry probe of Titan permit the computation of the solar heating rate on Titan with greater certainty than heretofore. We use the haze model derived from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008a. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007.11.019] to evaluate the variation in solar heating rate with altitude and solar zenith angle in Titan's atmosphere. We find the disk-averaged solar energy deposition profile to be in remarkably good agreement with earlier estimates using very different aerosol distributions and optical properties. We also evaluated the radiative cooling rate using measurements of the thermal emission spectrum by the Cassini Composite Infrared Spectrometer (CIRS) around the latitude of the Huygens site. The thermal flux was calculated as a function of altitude using temperature, gas, and haze profiles derived from Huygens and Cassini/CIRS data. We find that the cooling rate profile is in good agreement with the solar heating profile averaged over the planet if the haze structure is assumed the same at all latitudes. We also computed the solar energy deposition profile at the 10°S latitude of the probe-landing site averaged over one Titan day. We find that some 80% of the sunlight that strikes the top of the atmosphere at this latitude is absorbed in all, with 60% of the incident solar energy absorbed below 150 km, 40% below 80 km, and 11% at the surface at the time of the Huygens landing near the beginning of summer in the southern hemisphere. We compare the radiative cooling rate with the solar heating rate near the Huygens landing site averaging over all longitudes. At this location, we find that the solar heating rate exceeds the radiative cooling rate by a maximum of 0.5 K/Titan day near 120 km altitude and decreases strongly above and below this altitude. Since there is no evidence that the temperature structure at this latitude is changing, the general circulation must redistribute this heat to higher latitudes.  相似文献   

13.
Nearly all adaptive optics images of Titan taken between December 2001 and November 2004 showed tropospheric clouds located within 30° of the south pole. We report here on a dissipation of Titan's south polar clouds observed in twenty-nine Keck and Gemini images taken between December 2004 and April 2005. The near complete lack of south polar cloud activity during this time, and subsequent resurgence months later at generally higher latitudes, may be the beginning of seasonal change in Titan's weather. The ∼5 month decrease in cloud activity may also have been caused by methane rainout from a large cloud event in October 2004. Understanding the seasonal evolution of Titan's clouds, and of any precipitation associated with them, is essential for interpreting the geological observations of fluid flow features observed over a wide range of Titan latitudes with the Cassini/Huygens spacecraft.  相似文献   

14.
Toon OB  McKay CP  Griffith CA  Turco RP 《Icarus》1992,95(1):24-53
Microphysical simulations of Titan's stratospheric haze show that aerosol microphysics is linked to organized dynamical processes. The detached haze layer may be a manifestation of 1 cm sec-1 vertical velocities at altitudes above 300 km. The hemispherical asymmetry in the visible albedo may be caused by 0.05 cm sec-1 vertical velocities at altitudes of 150 to 200 km, we predict contrast reversal beyond 0.6 micrometer. Tomasko and Smith's (1982, Icarus 51, 65-95) model, in which a layer of large particles above 220 km altitude is responsible for the high forward scattering observed by Rages and Pollack (1983, Icarus 55, 50-62), is a natural outcome of the detached haze layer being produced by rising motions if aerosol mass production occurs primarily below the detached haze layer. The aerosol's electrical charge is critical for the particle size and optical depth of the haze. The geometric albedo, particularly in the ultraviolet and near infrared, requires that the particle size be near 0.15 micrometer down to altitudes below 100 km, which is consistent with polarization observations (Tomasko and Smith 1982, West and Smith 1991, Icarus 90, 330-333). Above about 400 km and below about 150 km Yung et al.'s (1984, Astrophys. J. Suppl. Ser. 55, 465-506) diffusion coefficients are too small. Dynamical processes control the haze particles below about 150 km. The relatively large eddy diffusion coefficients in the lower stratosphere result in a vertically extensive region with nonuniform mixing ratios of condensable gases, so that most hydrocarbons may condense very near the tropopause rather than tens of kilometers above it. The optical depths of hydrocarbon clouds are probably less than one, requiring that abundant gases such as ethane condense on a subset of the haze particles to create relatively large, rapidly removed particles. The wavelength dependence of the optical radius is calculated for use in analyzing observations of the geometric albedo. The lower atmosphere and surface should be visible outside of regions of methane absorption in the near infrared. Limb scans at 2.0 micrometers wavelength should be possible down to about 75 km altitude.  相似文献   

15.
McKay CP  Pollack JB  Lunine JI  Courtin R 《Icarus》1993,102(1):88-98
We have developed a coupled atmosphere and ocean model of Titan's surface. The atmospheric model is a 1-D spectrally-resolved radiative-convective model. The ocean thermodynamics are based upon solution theory. The ocean, initially composed of CH4, becomes progressively enriched in ethane over time. The partial pressures of N2 and CH4 in the atmosphere are dependent on the ocean temperature and composition. We find that the resulting system is stable against a runaway greenhouse. Accounting for the decreased solar luminosity, we find that Titan's surface temperature was about 20 K colder 4 Gyr ago. Without an ocean, but only small CH4 lakes, the temperature change is 12 K. In both cases we find that the surface of Titan may have been ice covered about 3 Gyr ago. In the lakes case condensation of N2 provides the ice, whereas in the ocean case the ocean freezes. The dominant factor influencing the evolution of Titan's surface temperature is the change in the solar constant--amplified, if an ocean is present, by the temperature dependence of the solubility of N2. Accretional heating can dramatically alter the surface temperature; a surface thermal flux of 500 erg cm-2 sec-1, representative of small levels of accretional heating, results in a approximately 20 K change in surface temperatures.  相似文献   

16.
Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.  相似文献   

17.
18.
We report on the discovery of emissions due to carbon monoxide from Titan's atmosphere, from mid-infrared observations with the ISAAC spectrometer at the Very Large Telescope and covering the 4.50-4.85 μm range. We detected about 45 emission lines coinciding with CO ro-vibrational lines, including CO(1-0) (P18 to R11) and CO(2-1) (P11 to R11). We show that these emissions cannot be generated thermally but occur in non-LTE conditions, due to radiative de-excitation from the v=1 and v=2 CO levels after excitation at 4.7 and 2.3 μm by solar radiation. A complete fluorescence model is then developed, allowing to compute the state populations of the two most abundant CO isotopes and N2(1). It includes absorption by CO and CH4, and vibrational-thermal and vibrational-vibrational collisional exchanges with CO, N2, CH4, and H2. Emerging radiances at the top of the atmosphere are evaluated with a line-by-line code and compared to observations. Contribution functions show that the CO emissions sound Titan's stratosphere: while the (1-0) lines generally probe two layers, located respectively at 100-250 km and 300-550 km, the (2-1) lines are sensitive to the intermediate layer at 150-300 km. A sensitivity study is performed to establish the effect of the main model parameters (temperature profile, collisional scenario, and CO stratospheric abundance) on the results. Models reproduce the essential structure of the observed emissions. The (1-0) fundamental band is generally well fit with a nominal CO mixing ratio of 32 ppm—as inferred in the troposphere from observations at 4.80-5.10 μm (Lellouch et al., 2003, Icarus 162, 126-143). However, this band is only weakly dependent on the CO abundance, and given temperature and collisional scenario uncertainties, it constrains the CO stratospheric mixing ratio only to within a factor of ∼3. In addition, the nominal model with 32 ppm CO underestimates the first hot (2-1) transition by approximately a factor of 2. This discrepancy can be resolved by a combined adjustment of collisional rates and an increased CO stratospheric ratio of 60 ppm, consistent with the determination of Gurwell and Muhleman (2000, Icarus 145, 653-656). In contrast, the CO vertical profile suggested by Hidayat et al. (1998, Icarus 133, 109-133), strongly depleted above 200 km, cannot match the data for any realistic collisional scenario, and is therefore not supported by our results.  相似文献   

19.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

20.
P. Rannou  F. Hourdin  D. Luz 《Icarus》2004,170(2):443-462
We have developed a coupled general circulation model of Titan's atmosphere in which the aerosol haze is treated with a microphysical model and is advected by the winds. The radiative transfer accounts for the non uniform haze distribution and, in turn, drives the dynamics. We analyze the GCM results, especially focusing on the difference between a uniform haze layer and a haze layer coupled to the dynamics. In the coupled simulation the aerosols tend to accumulate at the poles, at latitudes higher than ±60°. During winter, aerosols strongly radiate at thermal infrared wavelengths enhancing the cooling rate near the pole. Since this tends to increase the latitudinal gradients of temperature the direct effect of this cooling excess, in contrast to the uncoupled haze case, is to increase the strength of the meridional cells as well as the strength of the zonal winds and profile. This is a positive feedback of the haze on dynamics. The coupled model reproduces observations about the state of the atmosphere better than the uniform haze model, and in addition, the northern polar hood and the detached haze are qualitatively reproduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号