首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a small sample of known near Earth objects (NEOs), both asteroids and comets, with low minimum orbital intersection distance (MOID). Through a simple numerical procedure we generate slightly different orbits from this sample in such a way that these bodies will collide with the Earth at a specific epoch. Then we study the required change in orbital velocity (along track Δv) in order to deflect these NEOs at different epochs before the impact event. The orbital evolution of these NEOs is performed through a full N-body numerical integrator. A comparison with analytical estimates is also performed in selected cases. Interesting features in the Δv/time before impact plots are found; as a prominent result, we find that close approaches to the Earth before the epoch of the impact can make the overall deflection easier.  相似文献   

2.
The orbital and absolute magnitude distribution of the near-Earth objects (NEOs) is difficult to compute, partly because only a modest fraction of the entire NEO population has been discovered so far, but also because the known NEOs are biased by complicated observational selection effects. To circumvent these problems, we created a model NEO population which was fit to known NEOs discovered or accidentally rediscovered by Spacewatch. Our method was to numerically integrate thousands of test particles from five source regions that we believe provide most NEOs to the inner Solar System. Four of these source regions are in or adjacent to the main asteroid belt, while the fifth one is associated with the transneptunian disk. The nearly isotropic comets, which include the Halley-type comets and the long-period comets, were not included in our model. Test bodies from our source regions that passed into the NEO region (perihelia q<1.3 AU and aphelia Q≥0.983 AU) were tracked until they were eliminated by striking the Sun or a planet or were ejected out of the inner Solar System. These integrations were used to create five residence time probability distributions in semimajor axis, eccentricity, and inclination space (one for each source). These distributions show where NEOs from a given source are statistically most likely to be located. Combining these five residence time probability distributions with an NEO absolute magnitude distribution computed from previous work and a probability function representing the observational biases associated with the Spacewatch NEO survey, we produced an NEO model population that could be fit to 138 NEOs discovered or accidentally rediscovered by Spacewatch. By testing a range of possible source combinations, a best-fit NEO model was computed which (i) provided the debiased orbital and absolute magnitude distributions for the NEO population and (ii) indicated the relative importance of each NEO source region.Our best-fit model is consistent with 960±120 NEOs having H<18 and a<7.4 AU. Approximately 44% (as of December 2000) have been found so far. The limits on this estimate are conditional, since our model does not include nearly isotropic comets. Nearly isotropic comets are generally restricted to a Tisserand parameter (with respect to Jupiter) of T<2, such that few are believed to have a<7.4 AU. Our computed NEO orbital distribution, which is valid for bodies as faint as H<22, indicates that the Amor, Apollo, and Aten populations contain 32±1%, 62±1%, and 6±1% of the NEO population, respectively. We estimate that the population of objects completely inside Earth's orbit (IEOs) arising from our source regions is 2% the size of the NEO population. This value does not include the putative Vulcanoid population located inside Mercury's orbit. Overall, our model predicts that ∼61% of the NEO population comes from the inner main belt (a<2.5 AU), ∼24% comes from the central main belt (2.5<a<2.8 AU), ∼8% comes from the outer main belt (a>2.8 AU), and ∼6% comes from the Jupiter-family comet region (2<T?3). The steady-state population in each NEO source region, as well as the influx rates needed to replenish each region, were calculated as a by-product of our method. The population of extinct comets in the Jupiter-family comet region was also computed.  相似文献   

3.
Besides new observations, mining old photographic plates and CCD image archives represents an opportunity to recover and secure newly discovered asteroids, also to improve the orbits of Near Earth Asteroids (NEAs), Potentially Hazardous Asteroids (PHAs) and Virtual Impactors (VIs). These are the main research aims of the EURONEAR network. As stated by the IAU, the vast collection of image archives stored worldwide is still insufficiently explored, and could be mined for known NEAs and other asteroids appearing occasionally in their fields. This data mining could be eased using a server to search and classify findings based on the asteroid class and the discovery date as “precoveries” or “recoveries”. We built PRECOVERY, a public facility which uses the Virtual Observatory SkyBoT webservice of IMCCE to search for all known Solar System objects in a given observation. To datamine an entire archive, PRECOVERY requires the observing log in a standard format and outputs a database listing the sorted encounters of NEAs, PHAs, numbered and un‐numbered asteroids classified as precoveries or recoveries based on the daily updated IAU MPC database. As a first application, we considered an archive including about 13 000 photographic plates exposed between 1930 and 2005 at the Astronomical Observatory in Bucharest, Romania. Firstly, we updated the database, homogenizing dates and pointings to a common format using the JD dating system and J2000 epoch. All the asteroids observed in planned mode were recovered, proving the accuracy of PRECOVERY. Despite the large field of the plates imaging mostly 2.27° × 2.27° fields, no NEA or PHA could be encountered occasionally in the archive due to the small aperture of the 0.38m refractor insufficiently to detect objects fainter than V ∼ 15. PRECOVERY can be applied to other archives, being intended as a public facility offered to the community by the EURONEAR project. This is the first of a series of papers aimed to improve orbits of PHAs and NEAs using precovered data derived from archives of images to be data mined in collaboration with students and amateurs. In the next paper we will search the CFHT Legacy Survey, while data mining of other archives is planned for the near future (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We obtain the size and orbital distributions of near-Earth asteroids (NEAs) that are expected to be in the 1 : 1 mean motion resonance with the Earth in a steady state scenario. We predict that the number of such objects with absolute magnitudes H<18 and H<22 is 0.65±0.12 and 16.3±3.0, respectively. We also map the distribution in the sky of these Earth coorbital NEAs and conclude that these objects are not easily observed as they are distributed over a large sky area and spend most of their time away from opposition where most of them are too faint to be detected.  相似文献   

5.
The CCD field of view of the Near Earth Object Survey Telescope (NEOST) is 1.94°xl.94°. As a wide-field telescope, the focusing based on a single star will lead to an uneven distribution of PSF (Point Spread Function) on the CCD image due to the field curvature. The features of the PSF distribution on the CCD image are studied. By fitting the relation between the defocusing and the FWHM (Full Width at Half Maximum) of PSF, the curved focal surface is simulated and therefore the best imaging plane is determined. Hereby, a focusing method based on the optimum imaging plane determined by judging the histogram of FWHM is proposed.  相似文献   

6.
A comparative study of the evolution of the Sun–Jupiter–Asteroid system near the 4:1 and 7:2 resonances is performed by means of two techniques that proceed differently from the Hamiltonian corresponding to the planar restricted elliptic three-body problem. One technique is based on the classical Schubart averaging while the other is based on a mapping method in which the perturbing part of the Hamiltonian is expanded and the resulting terms are ordered according to a weight function that depends on the powers of eccentricities and the coefficients of the terms. For the mapping method the effect of Saturn on the asteroidal evolution is introduced and the degree of chaos is estimated by means of the Lyapunov time. Both methods are shown to lead to similar results and can be considered a suitable tool for describing the evolution of asteroids in the Kirkwood gap and the group corresponding to the 4:1 and 7:2 Jovian resonances, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The ESO/MPG WFI and the INT WFC wide field archives comprising 330 000 images were mined to search for serendip‐itous encounters of known Near Earth Asteroids (NEAs) and Potentially Hazardous Asteroids (PHAs). A total of 152 as‐teroids (44 PHAs and 108 other NEAs) were identified using the PRECOVERY software, their astrometry being measured on 761 images and sent to the Minor Planet Centre. Both recoveries and precoveries were reported, including prolonged orbital arcs for 18 precovered objects and 10 recoveries. We analyze all new opposition data by comparing the orbits fitted before and after including our contributions. We conclude the paper presenting “Mega‐Precovery”, a new online service focused on data mining of many instrument archives simultaneously for one or a few given asteroids. A total of 28 instrument archives have been made available for mining using this tool, adding together about 2.5 million images forming the “Mega‐Archive”  相似文献   

8.
Migration of trans-Neptunian objects under their mutual gravitation influence and the influence of the giant planets is investigated. These investigations are based on computer simulation results and on some formulas. We estimated that about 20 % of near-Earth objects with diameter d ≥ 1 km may have come from the Edgeworth-Kuiper belt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The analysis of radar observations of the asteroid 4179 Toutatis by Hudson and Ostro (1995, Science270, 84-86) yielded a complex spin state. We revisit the visible lightcurve data on Toutatis (Spencer et al. 1995, Icarus117, 71-89) to explore the feasibility of using a rotational lightcurve to recover the signature of an excited spin state. For this, we apply Fourier transform and CLEAN algorithm (WindowCLEAN). WindowCLEAN yields clear and precise frequency signatures associated with the precession of the long axis about the total angular momentum vector and a combination of this precession and rotation about the long axis. For a long-axis mode state, our periodicities for Toutatis yield a mean long-axis precession period, Pφ, of 7.38 days and a rotation period around the long axis, Pψ, of 5.38 days, which compare well with the respective periods of 7.42 and 5.37 days derived by Ostro et al. (1999, Icarus137, 122-139) and represent an independent confirmation of these values. We explain why the dramatic change in the Earth-Toutatis-Sun geometry during the time that the lightcurve was obtained has little effect on the final results obtained. Using the Toutatis example as a guide, we discuss the capabilities as well as the limitations on deriving information about complex spin states from asteroidal lightcurves.  相似文献   

10.
11.
The Japanese spacecraft Hayabusa is planed to reach the Asteroid Itokawa in September 2005, and to bring back some samples of its surface to Earth in 2007. We have studied the future possible evolution of this asteroid by integrating numerically over 100 Myr a set of 39 initially indistinguishable orbits (clones), obtained either by small variations of the nominal initial conditions, or by using different computers (introducing different round-off errors). The results indicate that an Earth impact of this 500-m-size asteroid is likely within a million years, which is only a factor of four larger than the average impact frequency of asteroids of this size. The mission Hayabusa may thus sample a good candidate for being among the next 500-m-size Earth impactors.  相似文献   

12.
The recent discovery of a relatively small basaltic asteroid in the outer main belt with no apparent link to (4) Vesta raised several hypotheses on its origin. We present the results of a dynamical and mineralogical study of the region near (1459) Magnya intended to establish its origin. The dynamical analysis shows that the region is filled with high-order two-body and three-body mean motion resonances and nonlinear secular resonances, which can lead to slow chaotic diffusion. The mineralogical analysis has not identified any other asteroid with a composition similar to Magnya, nor the presence of fragments that could be securely related to the catastrophic disruption of a differentiated parent body. The various scenarios for the origin of Magnya are also discussed in the face of both the results presented here and recently published results.  相似文献   

13.
J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234) developed a nonlinearized, finite-difference solution to the heat equation that yields orbital rates of change due to the Yarkovsky effect for small, spherical, bare-rock asteroids and used it to investigate changes in semimajor axis caused by the Yarkovsky effect. Here, we present results for changes in eccentricity and longitude of periapse. These results may be useful as benchmarks for simplified analytical solutions. Moreover, we explore a range of parameters, some of which are inaccessible to most other approaches. Instantaneous rates can be quite fast: For a 1-m scale body rotating with a 5-h period, de/dt can be as fast as 0.1 per million years (da/dt rates for similar test bodies were reported in J. N. Spitale and R. Greenberg (2001, Icarus149, 222-234)). For more typical rotation periods, these rates would be considerably slower. Output from our calculation method could be used in simulations of asteroid population evolution such as that by W. F. Bottke, D. P. Rubincam, and J. A. Burns (2000, Icarus145, 301-331). On long time scales, impacts would randomize the spin axis before significant orbital evolution could occur. Nevertheless, occasional favorable rotation states might persist long enough for substantial eccentricity changes to accumulate (1) if the body is decoupled from the main belt (e.g., many near-Earth asteroids), (2) if the population of very small (mm-scale) main-belt impactors is less than expected, or (3) if our numerical results are scaled up to km-size bodies.  相似文献   

14.
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching ?263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.  相似文献   

15.
During the Near-Earth Asteroid Rendezvous (NEAR) spacecraft's investigation of asteroid 433 Eros, inflight calibration measurements from the multispectral imager (MSI) have provided refined knowledge of the camera's radiometric performance, pointing, and light-scattering characteristics. Measurements while at Eros corroborate most earlier calibration results, although there appears to be a small, gradual change in instrument dark current and flat field due to effects of aging in the space environment. The most pronounced change in instrument behavior, however, is a dramatic increase in scattered light due to contaminants accumulated on the optics during unscheduled fuel usage in December 1998. Procedures to accurately quantify and to remediate the scattered light are described in a companion paper (Li et al. 2002, Icarus155, 00-00). Acquisition of Eros measurements has clarified the relative, filter-to-filter, radiometric performance of the MSI. Absolute radiometric calibration appears very well constrained from flight measurements, with an accuracy of ∼5%. Pointing relative to the spacecraft coordinate system can be determined from the temperature of the spacecraft deck with an accuracy of ∼1 pixel.  相似文献   

16.
17.
18.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

19.
20.
近地天体望远镜是巡天望远镜, 具有短焦距、大视场、低空间分辨率的光学特点. 望远镜只有一个主焦点, 焦距1.8 m, 底片比例9um/'', 像斑几何能量集中度EE80 ≤2''(像斑环绕能量的80%,即80% encircled energy, 记为EE80), 有效视场直径为4.28-°(14.3deg2), 目前配10k times 10k的STA1600LN CCD (charge-coupled device) camera, 观测视场为9deg2. 通过光学系统设计, 在原光学系统上增加副镜及场改正镜, 获得了焦距9m的卡氏焦点和内氏焦点,底片比例43.6 um /",在直径15''的可用视场内,像斑EE80≤0.5",为近地天体望远镜实现多终端观测提供了理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号