首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mars Global Surveyor Mars Orbiter Camera wide-angle cameras were used to obtain images of the north and south seasonal and residual polar caps between 1999 and 2003. Wide-angle red camera images were used in assembling mosaics of the north and south polar recessions and regression rates were measured and compared. There are small variations in the north polar recession between 2000 and 2002, especially between LS=7° and LS=50°, however there is no evidence for the plateau in the recession curves that has been observed in some prior years. The south polar recession changes very little from year to year, and the 2001 dust storm had little if any effect on the average cap recession that year. Albedo values of the geographic north pole were measured using wide-angle red and blue camera images, and the residual south polar cap configuration was compared between the three years observed by MOC. The albedo of the geographic north pole generally varies between 0.5 and 0.6 as measured from MOC wide-angle red camera images. There were only minor variations near the edges of the residual south polar cap between the three years examined.  相似文献   

2.
Comparisons of the northern and southern far ultraviolet (UV) auroral emissions of Jupiter from the Hubble Space Telescope (HST) or any other ultraviolet imager have mostly been made so far on a statistical basis or were not obtained with high sensitivity and resolution. Such observations are important to discriminate between different mechanisms responsible for the electron acceleration of the different components of the aurora such as the satellite footprints, the «main oval» or the polar emissions. The field of view of the ACS and STIS cameras on board HST is not wide enough to provide images of the full jovian disk. We thus compare the morphology of the north and south aurora observed 55 min apart and we point out similarities and differences. On one occasion HST pointed successively the two polar regions and auroral images were seen separated by only 3 min. This makes it possible to compare the emission structure and the emitted FUV power of corresponding regions. We find that most morphological features identified in one hemisphere have a conjugate counterpart in the other hemisphere. However, the power associated with conjugate regions of the main oval, diffuse or discrete equatoward emission observed quasi-simultaneously may be different in the two hemispheres. It is not directly nor inversely proportional to the strength of the B-field as one might expect for diffuse precipitation or field-aligned acceleration with equal ionospheric electron density in both hemispheres. Finally, the lack of symmetry of some polar emissions suggests that some of them could be located on open magnetic field lines.  相似文献   

3.
We present adaptive optic images of Uranus obtained with the 10-m W. M. Keck II telescope in June 2000, at wavelengths between 1 and 2.4 μm. The angular resolution of the images is ∼0.06-0.09″. We identified eight small cloud features on Uranus's disk, four of which were in the northern hemisphere. The latter features are ∼1000-2000 km in extent and located in the upper troposphere, above the methane cloud, at pressures between 0.5 and 1 bar. Our data have been combined with HST data by Hammel et al. (2001, Icarus153, 229-235); the combination of Keck and HST data allowed derivation of an accurate wind velocity profile. Our images further show Uranus's entire ring system: the asymmetric ? ring, as well as the three groups of inner rings (outward from Uranus): the rings 6+5+4, α+β, and the η+γ+δ rings. We derived the equivalent I/F width and ring particle reflectivity for each group of rings. Typical particle albedos are ∼0.04-0.05, in good agreement with HST data at 0.9 μm.  相似文献   

4.
We report an improved measurement of the rotational axis orientation of Asteroid (4) Vesta. By analyzing and combining all previous measurements using a limb-fitting technique from ground/HST data collected from 1983 to 2006, we derive a pole solution of (RA = 304.5°, Dec = 41.5°). Images of Vesta acquired with the Wide Field Camera 3 onboard the Hubble Space Telescope (HST) in February 2010 are combined with images from the Wide Field Planetary Camera 2 on HST obtained in 1994, 1996, and 2007 at similar spatial resolution and wavelengths to perform new measurements. Control point stereogrammetry returns a pole solution of (305.1°, 43.4°). An alternate method tracks surface features and fits their projected paths with ellipses to determine a great circle containing the pole for each HST observation. Combined, the four great circles yield a pole solution of (309.3°, 41.9°). These three solutions obtained with almost independent methods are within 3.5° of each other, suggesting a robust solution. Combining the results from all three techniques, we propose an improved value of the rotational axis of Vesta as RA = 305.8° ± 3.1°, Dec = 41.4° ± 1.5° (1-σ error). This new solution changes from (301°, 41°) reported by Thomas et al. (Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E. [1997a]. Icarus 128, 88-94) by 3.6°, and from (306°, 38°) reported by Drummond and Christou (Drummond, J.D., Christou, J. [2008]. Icarus 197, 480-496) by 3.4°. It changes the obliquity of Vesta by up to ∼3°, but increases the Sun-centered RA of Vesta at equinox by ∼8°, and postpones the date of equinox by ∼35 days. The change of the pole position is less than the resolution of all previous images of Vesta, and should not change the main science conclusions of previous research about Vesta.  相似文献   

5.
Titan, Saturn's largest moon, has a dense organic-laden atmosphere that displays dramatic seasonal variations in composition and appearance. Here we document the evolution of the dark polar hood, first seen in 1980 by Voyager 1 around the north pole, and report quantitative measurements of the hood's disappearance from the south pole in 2002–2003 using previously unpublished observations with the Hubble Space Telescope Advanced Camera for Surveys ( HST /ACS). These data support a model of the hood as a transient structure associated with downwelling during polar winter.  相似文献   

6.
《Icarus》2003,166(1):1-20
We have analyzed observations of the Acidalia hemisphere of Mars taken by the Hubble Space Telescope's Near-Infrared Camera Multi-Object Spectrograph (HST/NICMOS) during July of 1997 (Ls=152°, northern martian summer). The data consist of images at ∼60 km/pixel resolution, using both narrow- and medium-band filters specifically selected to allow us to study the hydration state of the martian surface. Calibration was performed by comparison to Phobos-2 ISM observations of overlapping regions, and atmospheric gas correction was performed by modeling the atmosphere for each pixel using a line-by-line radiative transfer code coupled with the MOLA altimetry data. Our results indicate the presence of at least three spectrally different large-scale (>1000 km diameter) terrains corresponding to the dark regions of northern Acidalia, the southern hemisphere classical dark terrain, and the classical intermediate terrain adjacent to southern Acidalia. We also identified two other spectrally unique terrains, corresponding to the northern polar ice cap, and to the southern winter polar hood. Comparisons with mineral spectra indicate the possibility of different H2O- or OH-bearing (i.e., hydroxides and/or hydrates) minerals existing both in northern Acidalia and in the nearby intermediate albedo terrain. Hydrated minerals do not appear to be spectrally important components of the southern hemisphere dark terrains imaged by HST in 1997.  相似文献   

7.
During the period October to December 1981, the Dynamics Explorer-2 (DE-2) spacecraft successively observed the South polar and the North polar regions, and recorded the temperature, composition and dynamical structure of the upper thermosphere. In October 1981, perigee was about 310 km altitude, in the vicinity of the South Pole, with the satellite orbit in the 09.00–21.00 L.T. plane. During late November and December, the perigee had precessed to the region of the North Pole, with the spacecraft sampling the upper thermosphere in the 06.00 18.00 L.T. plane. DE-2 observed the meridional wind with a Fabry-Perot interferometer (FPI), the zonal wind with the wind and temperature spectrometer (WATS), the neutral temperature with the FPI, and the neutral atmosphere composition and density with the neutral atmosphere composition spectrometer (NACS). A comparison between the South (summer) Pole and the North (winter) Pole data shows considerable seasonal differences in all neutral atmosphere parameters. The region of the summer pole, under similar geomagnetic and solar activity conditions, and at a level of about 300 km, is about 300 K warmer than that of the winter pole, and the density of atomic oxygen is strongly depleted (and nitrogen enhanced) around the summer pole (compared with the winter pole). Only part of the differences in temperature and composition structure can be related to the seasonal variation of solar insolation, however, and both polar regions display structural variations (with latitude and Universal Time) which are unmistakeable characteristics of strong magnetospheric forcing. The magnitude of the neutral atmosphere perturbations in winds, temperature, density and composition within both summer and winter polar regions all increase with increasing levels of geomagnetic activity.The UCL 3-dimensional time dependent global model has been used to simulate the diurnal, seasonal and geomagnetic response of the neutral thermosphere, attempting to follow the major features of the solar and geomagnetic inputs to the thermosphere which were present during the late 1981 period.In the UCL model, geomagnetic forcing is characterized by semi-empirical models of the polar electric field which show a dependence on the Y component of the Interplanetary Magnetic Field, due to Heppner and Maynard (1983), It is possible to obtain an overall agreement, in both summer and winter hemispheres, with the thermospheric wind structure at high latitudes, and to explain the geomagnetic control of the combined thermal and compositional structure both qualitatively and quantitatively. To obtain such agreement, however, it is essential to enhance the polar ionosphere as a consequence of magnetospheric particle precipitation, reflecting both widespread auroral (kilovolt) electrons, and “soft” cusp and polar cap sources. Geomagnetic forcing of the high latitude thermosphere cannot be explained purely by a polar convective electric field, and the thermal as well as ionising properties of these polar and auroral electron sources are crucial components of the total geomagnetic input.  相似文献   

8.
Hubble Space Telescope (HST) and ground-based observations of Neptune from 1991 to 2000 show that Neptune's northern Great Dark Spots (NGDS) remained remarkably stable in latitude and longitudinal drift rate, in marked contrast to the 1989 southern Great Dark Spot (GDS), which moved continuously equatorward during 1989 and dissipated unseen during 1990. NGDS-32, discovered in October 1994 HST images, (H. B. Hammel et al., 1995, Science268, 1740-1742), stayed at ∼32°N from 1994 through at least 1996, and possibly through 2000. The second northern GDS (NGDS-15), discovered in August 1996 HST images, (L. A. Sromovsky et al. 2001, Icarus146, 459-488), appears to have existed as early as 8 March 1996 and remained near 15°N for the 16 months over which it was observed. NGDS-32 had a very uniform longitudinal drift rate averaging −36.28±0.04°/day from 10 October 1994 to 2 November 1995, and −35.84±0.02°/day from 1 September 1995 through 24 November 1995. A single circulation feature certainly exists during each of the first two periods, though it is not certain that it is the same feature. It is probable, but less certain, that only a single circulation feature was tracked during the 1996-1998 period, during which positions are consistent with a modulated drift rate averaging −35.401±0.001°/day, but with a peak-to-peak modulation of 1.5°/day with an ∼760-day period. If NDS-32 varied its drift rate in accord with the local latitudinal shear in the zonal wind, then all its drift-rate changes might be due to only ∼0.4° of latitudinal motion. The movement of NGDS-15 is also not consistent with a uniform longitudinal drift rate, but the nature of its variation cannot be estimated from the limited set of observations. The relatively stable latitudinal positions of both northern dark spots are not consistent with current numerical model calculations treating them as anticyclonic vortices in a region of uniform potential vorticity gradient (R. P. Lebeau and T. E. Dowling 1998, Icarus132, 239-265). Possible explanations include unresolved latitudinal structure in the zonal wind background or unaccounted-for variations in vertical stability structure.  相似文献   

9.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

10.
The correlation between the polar cap geomagnetic variations (H-traces) and the changes of the azimuthal (YSE) and vertical (ZSE) components of the interplanetary magnetic field (IMF) during undisturbed periods is examined. It is shown that peak-to-peak correlation between YSE and geomagnetic horizontal component variations may be generally observed in the daytime cusp region, independently of the magnitude and polarity of the ZSE. The existence of the DP3 disturbances associated with the northward component ZSE > 0 is confirmed. It is shown that the disturbances due to the vertical component of the IMF dominate in the region near the pole. In so far as the southward component of the IMF generates both polar cap disturbances and geomagnetic substorms, the disturbances in the region near the pole, associated with ZSE < 0, may be regarded as a precursor of a substorm. On this basis a new index of the polar cap magnetic activity PCL, characterizing the changeability of the magnetic field is proposed. It is shown that the increase of the PCL index is followed in 1–2 hr by a substorm in 70% of events considered.  相似文献   

11.
The Cassini spacecraft Ultraviolet Imaging Spectrograph (UVIS) obtained observations of Jupiter's auroral emissions in H2 band systems and H Lyman-α from day 275 of 2000 (October 1), to day 81 of 2001 (March 22). Much of the globally integrated auroral variability measured with UVIS can be explained simply in terms of the rotation of Jupiter's main auroral arcs with the planet. These arcs were also imaged by the Space Telescope Imaging Spectrograph (STIS) on Hubble Space Telescope (HST). However, several brightening events were seen by UVIS in which the global auroral output increased by a factor of 2-4. These events persisted over a number of hours and in one case can clearly be tied to a large solar coronal mass ejection event. The auroral UV emissions from these bursts also correspond to hectometric radio emission (0.5-16 MHz) increases reported by the Galileo Plasma Wave Spectrometer (PWS) and Cassini Radio and Plasma Wave Spectrometer (RPWS) experiments. In general, the hectometric radio data vary differently with longitude than the UV data because of radio wave beaming effects. The 2 largest events in the UVIS data were on 2000 day 280 (October 6) and on 2000 days 325-326 (November 20-21). The global brightening events on November 20-21 are compared with corresponding data on the interplanetary magnetic field, solar wind conditions, and energetic particle environment. ACE (Advanced Composition Explorer) solar wind data was numerically propagated from the Earth to Jupiter with an MHD code and compared to the observed event. A second class of brief auroral brightening events seen in HST (and probably UVIS) data that last for ∼2 min is associated with auroral flares inside the main auroral ovals. On January 8, 2001, from 18:45-19:35 UT UVIS H2 band emissions from the north polar region varied quasiperiodically. The varying emissions, probably due to auroral flares inside the main auroral oval, are correlated with low-frequency quasiperiodic radio bursts in the 0.6-5 kHz Galileo PWS data.  相似文献   

12.
《New Astronomy Reviews》2002,46(2-7):279-282
We present 3-band HST imaging of three nearby (z<0.1) compact symmetric objects: 4C31.04, 1946+708 and 1146+596 (NGC 3894). These objects were chosen for HST observation on the basis of detected HI and molecular line absorption. The images show large amounts of obscuration in each source, well distributed throughout the host galaxies, but somewhat concentrated in the nuclear regions. All three also show evidence of nuclear structures which resemble disks or tori. We discuss the possible association of the nuclear structures and obscuration with their radio structures, and compare with other HST observations of GPS, CSS and large-scale radio galaxies.  相似文献   

13.
Optical and near-IR signatures of water ice on the Moon's surface were sought in the permanently shadowed regions near its poles. Significant amounts of multiply-scattered radiation partly illuminate primary shadows cast by craters and other features. If there is water ice in the permanently shadowed regions of the Moon's surface, its spectral signature should appear in this multiply-scattered light. This investigation can be done most effectively with observations obtained by spacecraft, because most selenocentric positions occupied by the Earth will also be occupied by the Sun at some point in time, and because the lunar poles are seen only obliquely to a terrestrial observer. Images obtained by Clementine are particularly well-suited to this task, because the spacecraft's polar orbit allowed images of the poles to be acquired on nearly every orbit, resulting in literally thousands of images taken within a few degrees of each pole, and because the filters on the ultraviolet-visual camera (UVVIS) and the near infrared camera (NIR) occur at major absorption bands or within important continuum features of water ice. Approximately 5800 images obtained by the UVVIS camera and 1800 images obtained by the NIR camera were calibrated and combined into coadded mosaics to create multispectral maps of the lunar poles with the highest possible signal-to-noise. Unfortunately, analysis of our UVVIS mosaics indicates that any possible signal from multiply-scattered light in primary shadows was overwhelmed by instrumental stray light. For the NIR camera, we were able to determine the normalized reflectance of several regions that were identified by Margot et al. (1999, Science284, 1658-1660) as permanent shadows. We have identified one permanently shadowed crater with a 1.5-μm band spectral signature indicative of between 2.5 and 21% fractional coverage of H2O frost. However, the same region shows a 2.0 μm spectral signature that is inconsistent with the presence of any water.  相似文献   

14.
We have analyzed the temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) nadir spectra to yield latitude-height resolved maps of various atmospheric forced wave modes as a function of season for a full Mars year. Among the isolated wave modes is the zonal mean, time mean temperature, which we used to derive zonal mean zonal winds and stationary wave quasi-geostrophic indices of refraction, diagnostic of their propagation. The diurnal Kelvin wave was isolated in the data, with results roughly consistent with models (Wilson and Hamilton, 1996, J. Atmos. Sci. 33, 1290-1326). The s = 1 and s = 2 stationary waves were found to have significant amplitude in ducts extending up the winter polar jets, while the s = 3 stationary wave was found to be confined to near the surface. The s = 1 stationary wave was found to have little phase tilt with height during northern winter, but significant westward phase tilt with height in the southern winter. This indicates that the wave carries heat poleward, slightly more than that found in Barnes et al. (1996; J. Geophys. Res. 101, 12,753-12,776). The s = 1 stationary wave is likely the dominant mechanism for eddy meridional heat transport for the southern winter. We noted that the phase of the s = 2 stationary wave is nearly constant with time, but that the s = 1 stationary wave moved 90° of longitude from fall to winter and back in spring in the North. While interannual variability is not yet addressed, overall, these results provide the first comprehensive benchmark for forced waves in Mars’s atmosphere against which future atmospheric models of Mars can be compared.  相似文献   

15.
Huiqun Wang  Jenny A. Fisher 《Icarus》2009,204(1):103-113
The complete archive of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGM) are used to study north polar clouds and dust storms that exhibit frontal structures during the spring and summer (Ls 0-180°). Results show that frontal events generally follow the edge of the polar cap during spring and mid/late summer with a gap in the distribution in early summer. The exact duration and timing of the gap vary from year to year. Ten to twenty percent of spring and summer time frontal events exhibit complex morphologies. Distinct temperature signatures are associated with features observed in images in many but not all cases. The general travel paths of the frontal events are eastward around the polar cap. Westward paths exist only at the edge of the polar cap in late spring/early summer. Occasionally, the paths curve toward or away from the polar cap in certain longitude sectors.  相似文献   

16.
H.M. Schmid  F. Joos  D. Gisler 《Icarus》2011,212(2):701-713
We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300 Å and spatially resolved (long-slit) spectropolarimetry covering the wavelength range 5200-9350 Å.For the polar region of Jupiter we find for λ = 6000 Å a very strong radial (perpendicular to the limb) fractional polarization with a seeing corrected maximum of about +11.5% in the South and +10.0% in the North. This indicates that the polarizing haze layer is thicker at the South pole. The polar haze layers extend down to 58° in latitude. The derived polarization values are much higher than reported in previous studies because of the better spatial resolution of our data and an appropriate consideration of the atmospheric seeing. Model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p ≈ 1.0), high albedo (ω ≈ 0.98) haze particles with a scattering asymmetry parameter of g ≈ 0.6 as expected for aggregate particles of the type described by West and Smith (West, R.A., Smith, P.H. [1991]. Icarus 90, 330-333). The deduced particle parameters are distinctively different when compared to lower latitude regions.The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. This is a natural outcome for a highly polarizing haze layer above an atmosphere where multiple scatterings are suppressed in absorption bands. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH4-band at 8870 Å.The South pole of Saturn shows a lower polarization (p ≈ 1.0-1.5%) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles <100 nm as suggested previously by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2005]. Icarus 179, 195-221).In addition we find in the V- and R-band a previously not observed strong polarization feature (p = 1.5-2.0%) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Finally we discuss the potential of ground-based limb polarization measurements for the investigation of the scattering particles in the atmospheres of Jupiter and Saturn.  相似文献   

17.
We present spectroscopic observations of a massive globular cluster in the dwarf irregular galaxy Sextans B, discovered by us on the Hubble Space Telescope Wide Field and Planetary Camera 2 (HST WFPC2) images. Long-slit spectra were obtained with the SCORPIO spectrograph on the 6-m telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences. We determine the age, metallicity and alpha-element abundance ratio for the globular cluster to be 2 ± 1 Gyr, ?1.35 ±0.25 dex, and 0.1 ± 0.1 dex, respectively. Main photometric and structural parameters of it were determined using our surface photometry on the HST images. The mass (~105 M⊙), luminosity and structural parameters appear to be typical of the globular clusters in our own Galaxy. Our findings shed new light on the evolutionary history of Sextans B.  相似文献   

18.
In this work we analyze and compare the vertical cloud structure of Saturn's Equatorial Zone in two different epochs: the first one close to the Voyagers flybys (1979-1981) and the second one in 2004, when the Cassini spacecraft entered its orbit around the planet. Our goal is to retrieve the altitude of cloud features used as zonal wind tracers in both epochs. We reanalyze three different sets of photometrically calibrated published data: ground-based in 1979, Voyager 2 PPS and ISS observations in 1981, and we analyze a new set of Hubble Space Telescope images for 2004. For all situations we reproduced the observed reflectivity by means of a similar vertical model with three layers. The results indicate the presence of a changing tropospheric haze in 1979-1981 (Ptop∼100 mbar, τ∼10) and in 2004 (Ptop∼50 mbar, τ∼15) where the tracers are embedded. According to this model the Voyager 2 ISS images locate cloud tracers moving with zonal velocities of 455 to 465 (±2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, our previous works had showed cloud tracers moving with zonal wind speeds of 280±10 m/s at a pressure level of about 50±10 mbar. All these values are calculated in the same region (3°±2° N). This speed difference, if interpreted as a vertical wind shear, requires a change of per scale height, two times greater than that estimated from temperature observations. We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with HST ones and Cassini CIRS derived vertical wind shear, but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-1981 and 2004 cannot be explained as a wind shear effect alone and demand dynamical processes.  相似文献   

19.
Based on archival Hubble Space Telescope (HST) ACS/WFC images, we have performed stellar photometry for eight fields of the spiral galaxy NGC 1313 and its satellite, the low-mass Sph/Irr galaxy AM0319-662. Stars of various ages have been identified on the constructed Hertzsprung–Russell diagrams: young supergiants, middle-aged stars, and old stars (red giants); their apparent distributions over the body of the galaxy are presented. The red supergiants and giants have been divided into groups with larger and smaller color indices, corresponding to a difference in stellar metallicity. These groups of stars are shown to have different spatial distributions and to belong to two galaxies, NGC1313 itself and the disrupted satellite. We have determined the distance to NGC 1313, D = 3.88 ± 0.07 Mpc, by the TRGB method from six fields. Our photometry of 2014 HST images has revealed an emerged charge transfer inefficiency on the ACS/WFC CCDs, which manifests itself as a dependence of the photometry of stars on their coordinates on the CCD.  相似文献   

20.
Using the high-quality data set of 165 images taken at 11 epochs over the 5.13 h rotation of the large C-type Asteroid 511 Davida, we find the dimensions of its triaxial ellipsoid model to be 357±2×294±2×231±50 km. The images were acquired with the adaptive optics system on the 10 m Keck II telescope on December 27, 2002. The a and b diameters are much better determined than previously estimated from speckle interferometry and indirect measurements, and our mean diameter, (abc)1/3=289±21 km, is 19% below previous estimates. We find the pole to lie within 2° of [RA=295°; Dec=0°] or in Ecliptic coordinates [λ=297°; β=+21°], a significant improvement to the pole direction. Otherwise, previous determinations of the axial ratios agree with our new results. These observations illustrate that our technique of finding the dimensions and pole of an asteroid from its changing projected size and shape is very powerful because it can be done in essentially one night as opposed to decades of lightcurves. Average departures of 3% (5 km) of the asteroid's mean radius from a smooth outline are detected, with at least two local positive-relief features and at least one flat facet showing approximately 15 km deviations from the reference best-fit ellipsoid. The facet is reminiscent of large global-scale craters on Asteroid 253 Mathilde (also a C-type) when seen edge-on in close-up images from the NEAR mission flyby. We show that giant craters (up to 150 km diameter, the size of the largest facets seen on Davida) can be expected from the impactor size distribution, without likelihood of catastrophic disruption of Davida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号