首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-axisymmetric, non-dipolar magnetic fields of Uranus and Neptune are markedly different from the axially-dipolar dominated fields of the other planets in our Solar System with active dynamos. Stanley and Bloxham [Stanley, S., Bloxham, J., 2004. Nature 428, 151-153] used numerical modeling to demonstrate that Uranus' and Neptune's unusual fields could be the result of a different convective region geometry in these planets. They found that a numerical dynamo operating in a thin shell surrounding a stably-stratified fluid interior produces magnetic field morphologies similar to those of Uranus and Neptune. This geometry for the convective region was initially proposed by Hubbard et al. [Hubbard, W.B., Podolak, M., Stevenson, D.J., 1995. In: Cruickshank, D. (Ed.), Neptune and Triton. Univ. of Arizona Press, Tucson, pp. 109-138] to explain both the magnetic field morphology as well as the low intrinsic heat flows from these planets. Here we examine the influence of varying the stable layer radius in numerical models and compare the results to thin shell models surrounding solid inner cores. We find that a limited range of stable-layer shell thicknesses exist in which Uranus/Neptune-like field morphologies result. This allows us to put constraints on the size of the convective layers in Uranus and Neptune.  相似文献   

2.
Neptune was observed by the Infrared Space Observatory (ISO) Long-Wavelength Spectrometer (LWS) between 46 and 185 μm. At wavelengths between 50 and 110 μm the accuracy of these measurements is ?0.3 K. Observations of this planet made by the ISO Short-Wavelength Spectrometer between 28 and 44 μm were combined with the LWS data to determine a disk-averaged temperature profile and derive several physical quantities. The combined spectra are matched best by a He/(H2+He) mass ratio of 26.4+2.6−3.5%, reflecting a He molar fraction of 14.9+1.7−2.2%, assuming the molar fraction of CH4 to be 2% in the troposphere. This He abundance is consistent with one derived from analysis of joint Voyager-2 IRIS and radio occultation experiment data, a technique whose accuracy has recently been called into question. For a disk average, the para-H2 fraction is found to be no more than ∼1.5% different from its equilibrium value, and the N2 mixing ratio is probably less than 0.7%. The composite spectrum is best fit by invoking a CH4 ice condensate cloud. Using a Mie approximation to particle scattering and absorption, best-fit particle sizes lie between 15 and 40 μm. The composite spectra are relatively insensitive to the vertical distribution of the cloud, but the particle scale height must be greater than 5% of the gas scale height. The best models are consistent with an effective temperature for Neptune that is 59.5±0.6 K, a value slightly lower than derived by the Voyager IRIS experiment—possibly Neptune's mid- and far-infrared emission has changed during the seven years that lie between its encounter with Voyager 2 and the first spectra taken of this planet with ISO. The model spectra are also ostensibly lower than ground-based observations in the spectral range of 17-24 μm, but this discrepancy can be relieved by perturbing the temperature of the lower stratosphere where the LWS spectrum is not particularly sensitive, combined with the uncertainty in the absolute calibration of the ground-based measurements.  相似文献   

3.
The J = 3-2 rotational line of CO in Neptune has been measured using the heterodyne receiver B3 at the JCMT. The spectral resolution was 1.25 MHz and 25 tunings were used to cover a frequency range of almost 20 GHz. The measured line shape, encompassing both the broad absorption feature arising in the lower atmosphere and a narrow emission core from the upper stratosphere, indicates that the CO mole ratio is not uniform with altitude, with best-fit values of in the upper stratosphere and 0.6±0.4×10−6 in the lower stratosphere and troposphere. The higher stratospheric abundance indicates that a dual, internal and external, origin of CO is most likely.  相似文献   

4.
We studied the propagation of uncertainties carried by the reaction rate coefficients in the photochemistry of Neptune's stratosphere. We showed that the uncertainties on the mole fractions of main hydrocarbons are equal to or larger than the estimated uncertainties on abundances gathered from observations. From a global sensitivity analysis study, we determined a list of 26 key reactions and discussed the 7 main key reactions that should be studied in priority to lower the uncertainties in the mole fractions computed from a photochemical model. This methodology is essential to improve the predictivity of photochemical models and, consequently, to better understand the physical and chemical processes that govern the composition of giant planet atmospheres.  相似文献   

5.
We present results of infrared observations of Neptune from the 10-m W. M. Keck I Telescope, using both high-resolution (0.04 arcsecond) broadband speckle imaging and conventional imaging with narrowband filters (0.6 arcsec resolution). The speckle data enable us to track the size and shape of infrared-bright features (“storms”) as they move across the disk and to determine rotation periods for latitudes −30 and −45°. The narrowband data are input to a model that allows us to make estimates of Neptune's stratospheric haze abundance and the size of storm features. We find a haze column density of ∼106 cm−2 for a haze layer located in the stratosphere, and a lower limit of 107 cm−2 and an upper limit of 109 cm−2 for a layer of 0.2 μm particles in the troposphere. We also calculate a lower limit of 7×106 km2 for the size of a “storm” feature observed on 13 October 1997.  相似文献   

6.
Using TEXES, the Texas Echelon cross Echelle Spectrograph, mounted on the Gemini North 8-m telescope we have mapped the spatial variation of H2, CH4, C2H2 and C2H6 thermal-infrared emission of Neptune. These high-spectral-resolution, spatially resolved, thermal-infrared observations of Neptune offer a unique glimpse into the state of Neptune’s stratosphere in October 2007, LS = 275.4° just past Neptune’s southern summer solstice (LS = 270°). We use observations of the S(1) pure rotational line of molecular hydrogen and a portion of the ν4 band of methane to retrieve detailed information on Neptune’s stratospheric vertical and meridional thermal structure. We find global-average temperatures of 163.8 ± 0.8, 155.0 ± 0.9, and 123.8 ± 0.8 K at the 7.0 × 10−3-, 0.12-, and 2.1-mbar levels with no meridional variations within the errors. We then use the inferred temperatures to model the emission of C2H2 and C2H6 in order to derive stratospheric volume mixing ratios (hence forth, VMR) as a function of pressure and latitude. There is a subtle meridional variation of the C2H2 VMR at the 0.5-mbar level with the peak abundance found at −28° latitude, falling off to the north and south. However, the observations are consistent within error to a meridionally constant C2H2 VMR of at 0.5 mbar. We find that the VMR of C2H6 at 1-mbar peaks at the equator and falls by a factor of 1.6 at −70° latitude. However, a meridionally constant VMR of at the 1-mbar level for C2H6 is also statistically consistent with the retrievals. Temperature predictions from a radiative-seasonal climate model of Neptune that assumes the hydrocarbon abundances inferred in this paper are lower than the measured temperatures by 40 K at 7 × 10−3 mbar, 30 K at 0.12 mbar and 25 K at 2.1 mbar. The radiative-seasonal model also predicts meridional temperature variations on the order of 10 K from equator to pole, which are not observed. Assuming higher stratospheric CH4 abundance at the equator relative to the south pole would bring the meridional trends of the inferred temperatures and radiative-seasonal model into closer agreement.We have also retrieved observations of C2H4 emission from Neptune’s stratosphere using TEXES on the NASA Infrared Telescope Facility (IRTF) in June 2003, LS = 266°. Using the observations from the middle of the planet and an average of the middle three latitude temperature profiles from the 2007 observations (9.5° of LS later, the seasonal equivalent of 9.5 Earth days within Earth’s seasonal cycle), we infer a C2H4 VMR of at 1.5 × 10−3 mbar, a value that is 3.25 times that predicted by global-average photochemical models.  相似文献   

7.
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice-rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.  相似文献   

8.
We present Strömgren b (472-nm) and y (551-nm) photometry of Neptune based on photoelectric measurements obtained at every apparition from 1972 to 2000. Neptune has brightened by 11% in b and 10% in y since 1980 with most of the increase occurring after 1990. By appending b data to published B magnitudes measured at Lowell from 1950 to 1966 and transformed to b, we show that Neptune is now brighter than at any time during the past half century. The nature of the year-to-year variations changed around 1990 when a steady rising trend overshadowed what appeared to be an inverse correlation with cyclic solar activity. By matching observations in b and y with near-infrared J (1.2-μm) and K (2.2-μm) photometry before, during, and after Neptune's 1976 infrared outburst, we show that the pattern of visible albedo variation parallels the infrared variation but with an amplitude 20-50 times smaller. A detailed comparison of photometry with ground-based and Voyager images at visible and red wavelengths during the 1989 Voyager encounter shows that small brightness variations occur when large discrete features rotate across Neptune's disk. This provides a rough association between visible features and photometric effects that we use to infer the state of Neptune's atmosphere for years when only photometry was available. A year-by-year analysis of variance of the photometry suggests that the 1976 and 1986-1989 infrared outbursts were isolated episodes of unusually vigorous atmospheric activity. Detrended magnitudes of Neptune are correlated with solar activity over the entire 29-year interval as well as 22-year subintervals, with solar UV now being favored as a causative mechanism rather than solar modulated galactic cosmic rays.  相似文献   

9.
Hubble Space Telescope (HST) and ground-based observations of Neptune from 1991 to 2000 show that Neptune's northern Great Dark Spots (NGDS) remained remarkably stable in latitude and longitudinal drift rate, in marked contrast to the 1989 southern Great Dark Spot (GDS), which moved continuously equatorward during 1989 and dissipated unseen during 1990. NGDS-32, discovered in October 1994 HST images, (H. B. Hammel et al., 1995, Science268, 1740-1742), stayed at ∼32°N from 1994 through at least 1996, and possibly through 2000. The second northern GDS (NGDS-15), discovered in August 1996 HST images, (L. A. Sromovsky et al. 2001, Icarus146, 459-488), appears to have existed as early as 8 March 1996 and remained near 15°N for the 16 months over which it was observed. NGDS-32 had a very uniform longitudinal drift rate averaging −36.28±0.04°/day from 10 October 1994 to 2 November 1995, and −35.84±0.02°/day from 1 September 1995 through 24 November 1995. A single circulation feature certainly exists during each of the first two periods, though it is not certain that it is the same feature. It is probable, but less certain, that only a single circulation feature was tracked during the 1996-1998 period, during which positions are consistent with a modulated drift rate averaging −35.401±0.001°/day, but with a peak-to-peak modulation of 1.5°/day with an ∼760-day period. If NDS-32 varied its drift rate in accord with the local latitudinal shear in the zonal wind, then all its drift-rate changes might be due to only ∼0.4° of latitudinal motion. The movement of NGDS-15 is also not consistent with a uniform longitudinal drift rate, but the nature of its variation cannot be estimated from the limited set of observations. The relatively stable latitudinal positions of both northern dark spots are not consistent with current numerical model calculations treating them as anticyclonic vortices in a region of uniform potential vorticity gradient (R. P. Lebeau and T. E. Dowling 1998, Icarus132, 239-265). Possible explanations include unresolved latitudinal structure in the zonal wind background or unaccounted-for variations in vertical stability structure.  相似文献   

10.
L.A. Sromovsky 《Icarus》2005,173(1):254-283
Raman scattering by H2 in Neptune's atmosphere has significant effects on its reflectivity for λ<0.5 μm, producing baseline decreases of ∼20% in a clear atmosphere and ∼10% in a hazy atmosphere. However, few accurate Raman calculations are carried out because of their complexity and computational costs. Here we present the first radiation transfer algorithm that includes both polarization and Raman scattering and facilitates computation of spatially resolved spectra. New calculations show that Cochran and Trafton's (1978, Astrophys. J. 219, 756-762) suggestion that light reflected in the deep CH4 bands is mainly Raman scattered is not valid for current estimates of the CH4 vertical distribution, which implies only a 4% Raman contribution. Comparisons with IUE, HST, and groundbased observations confirm that high altitude haze absorption is reducing Neptune's geometric albedo by ∼6% in the 0.22-0.26 μm range and by ∼13% in the 0.35-0.45 μm range. A sample haze model with 0.2 optical depths of 0.2-μm radius particles between 0.1 and 0.8 bars fits reasonably well, but is not a unique solution. We used accurate calculations to evaluate several approximations of Raman scattering. The Karkoschka (1994, Icarus 111, 174-192) method of applying Raman corrections to calculated spectra and removing Raman effects from observed spectra is shown to have limited applicability and to undercorrect the depths of weak CH4 absorption bands. The relatively large Q-branch contribution observed by Karkoschka is shown to be consistent with current estimates of Raman cross-sections. The Wallace (1972, Astrophys. J. 176, 249-257) approximation, produces geometric albedo ∼5% low as originally proposed, but can be made much more accurate by including a scattering contribution from the vibrational transition. The original Pollack et al. (1986, Icarus 65, 442-466) approximation is inaccurate and unstable, but can be greatly improved by several simple modifications. A new approximation based on spectral tuning of the effective molecular single scattering albedo provides low errors for zenith angles below 70° in a clear atmosphere, although intermediate clouds present problems at longer wavelengths.  相似文献   

11.
Erich Karkoschka 《Icarus》2011,215(1):439-448
The interior rotation and motions in giant planets have generally been probed only at radio wavelengths from spacecraft near the planet, except for Jupiter’s radio emission detectable from Earth. Here I suggest that Neptune’s interior can be indirectly probed at visible wavelength by tracking 10 features that are connected with a stationary latitudinal speed pattern of 7 m/s amplitude. All 10 features remained aligned at the same longitude throughout the Voyager observation period in 1989. Two of them, the South Polar Wave and South Polar Feature, have been observed from Earth for ∼20 years, but their extraordinary rotational stability was never recognized. They probably pinpoint Neptune’s rotational period (15.9663 ± 0.0002 h), one of the largest improvements in 346 years of measuring the giant planets’ rotations. The previous best estimate of Neptune’s rotational period (16.108 ± 0.006 h) was based on Voyager 2 radio data (Lecacheux, A., Zarka, P., Desch, M.D., Evans, D.R. [1993]. Geophys. Res. Lett. 20, 2711-2714). The new result suggests an upward revision of the mass of Neptune’s core. This finding may also question the accepted value of Uranus’ rotational period. The first reliable wind measurements within 15° of Neptune’s South Pole, based on tracking four features in Voyager images, show a 300 m/s eastward jet peaking near 76° South, while the area within 4° of the South Pole seems to be rotationally locked to the interior. These new observations of the stationary features and winds could address the long-standing question about the depth of the atmospheric circulation and may allow some constraints on convection currents in Neptune’s interior.  相似文献   

12.
Anthony Mallama 《Icarus》2007,187(2):620-622
Neptune will eclipse its satellite Nereid (Neptune II) on 2007 April 27 from 00 to 06 h UT and on 2008 April 21 from 12 to 17 h UT, with uncertainties of about 3 h; and a third eclipse may occur on 2009 April 17. These events offer unique opportunities for astrometric and geophysical measurement.  相似文献   

13.
L.A. Sromovsky  P.M. Fry  K.H. Baines 《Icarus》2003,163(1):256-261
Hubble Space Telescope (HST) observations in August 2002 show that Neptune’s disk-averaged reflectivity increased significantly since 1996, by 3.2 ± 0.3% at 467 nm, 5.6 ± 0.6% at 673 nm, and 40 ± 4% in the 850-1000 nm band, which mainly results from dramatic brightness increases in restricted latitude bands. When 467-nm HST observations from 1994 to 2002 are added to the 472-nm ground-based results of Lockwood and Thompson (2002, Icarus 56, 37-51), the combined disk-averaged variation from 1972 to 2002 is consistent with a simple seasonal model having a hemispheric response delay relative to solar forcing of ∼30 years (∼73% of a full season).  相似文献   

14.
Erich Karkoschka 《Icarus》2003,162(2):400-407
Based on 87 resolved Voyager images of the five innermost satellites of Neptune, their shapes were measured and fit by tri-axial ellipsoids with the semi-axes of 48 × 30 × 26 km for Naiad, 54 × 50 × 26 km for Thalassa, 90 × 74 × 64 km for Despina, 102 × 92 × 72 km for Galatea, and 108 × 102 × 84 km for Larissa. Thomas and Veverka published a similar shape for Larissa (104 × 89 km, J. Geophys. Res. 96, 19261-19268, 1991). The other satellites had no published shapes. Using Voyager photometry of the six inner satellites by the same authors and the revised sizes, including the published size of Proteus, the reflectivity within this inner system was found to vary by about 30%. Geometric albedos in the visible are estimated between 0.07 for Naiad and 0.10 for Proteus. The rotational lightcurves of these satellites seem to be due to satellite shapes.  相似文献   

15.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   

16.
L.A. Sromovsky 《Icarus》2005,173(1):284-294
Solar radiation reflected by the atmospheres of Neptune and Uranus is dominated by Rayleigh scattering at visible wavelengths, and thus subject to the effects of polarization. Ignoring these effects can lead to errors in reflected intensity of more than 9% in a clear atmosphere. But solving the full vector equation of transfer is computationally very costly, forcing approximations with limitations that are not well understood and not generally applicable to spatially resolved observations and complex atmospheric structures. Using accurate vector radiation transfer calculations, it is here shown that differences between vector and scalar results near zero phase angle have systematic dependencies on optical depth, single scattering albedo, and angle, that provide a basis for accurate approximation of the reflected intensities. With little computational cost, it is possible to calculate corrected spatially resolved scalar intensities that closely match vector intensities, with individual errors rarely exceeding 1%, and mean and RMS errors generally within a few tenths of 1%. The correction method accounts for the attenuating effects of clouds and molecular absorption.  相似文献   

17.
Stephen R. Kane 《Icarus》2011,214(1):327-333
With more than 15 years since the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the Solar System giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogs around solar-type stars.  相似文献   

18.
S.G Gibbard  I de Pater  S Martin  C.E Max 《Icarus》2003,166(2):359-374
We report on observations of Neptune from the 10-meter W.M. Keck II Telescope on June 17-18 (UT) 2000 and August 2-3 (UT) 2002 using the adaptive optics (AO) system to obtain a spatial resolution of 0.06 arcseconds. With this spatial resolution we can obtain spectra of individual bright features on the disk of Neptune in a filter centered near 2 microns. The use of a gas-only, simple reflecting layer radiative transfer model allows us to estimate the best fit altitudes of 18 bright features seen on these 4 nights and to set a constraint on the fraction of hydrogen in ortho/para equilibrium. On these nights there were three main types of features observed: northern hemisphere features in the range from +30 to −45 degrees; southern hemisphere features in the range from −30 to −50 degrees; and small southern features at −70 degrees. We find that the altitudes of the northern features are in the range from 0.023-0.064 bar, which places them in Neptune's stratosphere. Southern features at −30 to −50 degrees are mainly at altitudes from 0.10 to 0.14 bars. The small features at −70 degrees are somewhat deeper in the upper troposphere, at 0.17 and 0.27 bars. This pattern of features located at higher altitudes in the northern hemisphere and lower altitudes in the south has also been noted by previous observers. The best fits for all the observed spectra give a value of 1.0 for the fraction of hydrogen in ortho/para equilibrium; the value of the helium fraction is less well constrained by the data at 0.24. We suggest that the southern mid-latitude features are methane haze circulated up from below, while the −70° features may be isolated areas of upwelling in a general area of subsidence. Northern bright features may be due to subsidence of stratospheric haze material rather than upwelling and condensation of methane gas. We suggest that convection efficiently transports methane ice clouds to the tropopause in the Southern mid latitudes and thus plays a key role in the stratospheric haze production cycle.  相似文献   

19.
We present Adaptive Optics observations of Neptune's ring system at 1.6 and 2.2 μm, taken with the 10-m W.M. Keck II telescope in July 2002 and October 2003. We recovered the full Adams and Le Verrier rings for the first time since the Voyager era (1989), and show that the overall appearance of these rings did not change much, except for the ring arcs. Both the location and intensity of all arcs changed drastically relative to trailing arc Fraternité, which has a mean orbital motion of 820.1118 ± 0.0001 deg/day, equal to that of Nicholson et al.'s (1995, Icarus 113, 295-330) solution 2. Our data suggest that all arcs may have decayed over the last decade, while Liberté, in 2003, may be on the verge of disappearing completely. The observed changes in the relative intensities and locations of all arcs further indicate that material is migrating between resonance sites; leading arc Courage, for example, has jumped ∼8°, or, when adopting Namouni and Porco's (2002, Nature 417, 45-47) CER (corotation eccentricity resonance) theory, it advanced by one full corotation potential maximum. Overall, our observations reveal a system that is surprisingly dynamic, and no comprehensive theory exists as of yet that can explain all the observed intricacies.  相似文献   

20.
The polar condensation/sublimation of CO2, that involve about one fourth of the atmosphere mass, is the major Martian climatic cycle. Early observations in visible and thermal infrared have shown that the sublimation of the Seasonal South Polar Cap (SSPC) is not symmetric around the geographic South Pole.Here we use observations by OMEGA/Mars Express in the near-infrared to detect unambiguously the presence of CO2 at the surface, and to estimate albedo. Second, we estimate the sublimation of CO2 released in the atmosphere and show that there is a two-step process. From Ls=180° to 220°, the sublimation is nearly symmetric with a slight advantage for the cryptic region. After Ls=220° the anti-cryptic region sublimation is stronger. Those two phases are not balanced such that there is 22% ± 9 more mass the anti-cryptic region, arguing for more snow precipitation. We compare those results with the MOLA height measurements. Finally we discuss implications for the Martian atmosphere about general circulation and gas tracers, e.g. Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号