首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper pursues former studies of the coronal structures that are associated with radio type III bursts by taking advantage of the new capabilities of STEREO/SECCHI. The data analysis has been performed for 02 and 03 June 2007. During these two days several type III bursts, which were detected in the corona and in the interplanetary medium, occurred during the observing time of the Nançay radioheliograph. Electron beams accelerated in the same active region and producing type III emissions almost at the same time, can propagate in different well defined coronal structures below 15 R. Then, these structures become imbedded in the same plasma sheet which can be tracked up to 0.25 AU. Inhomogeneities travel along these structures; their velocities measured between 15 and 35 R are typical of those of a slow solar wind. Comparison with PFSS magnetic field extrapolation shows that its connection with the IP magnetic field is different from what is suggested by the present observations. These results are consistent with those obtained in the IP medium formerly by Buttighoffer (Astron. Astrophys. 335, 295, 1998) who identified by in situ measurements at 1 AU and beyond, the sites where Langmuir waves, associated with local type III emissions, are excited.  相似文献   

2.
Until recently, most of the information on particle acceleration processes in solar flares has been obtained from hard X-ray and cm-microwave observations. As a rule they provide information on electrons with energies below 300 keV. During recent years it became possible to measure the gamma-ray and millimeter radio emission with improved sensitivities. These spectral ranges carry information on much higher energy electrons. We studied the temporal and spectral behaviour of the radio burst emission at centimeter-millimeter wavelengths (8–50 GHz) by using the data from the patrol instruments of IAP (Bern University). We have analyzed more than 20 impulsive and long duration radio bursts (of 10 s to several 100 s duration).The main finding of the data analysis is the presence of spectral flattening throughout the bursts, which occurs always during the decay phase of flux peaks, at frequencies well above the spectral peak frequency and independently of burst duration. Furthermore, for some of the bursts, the flux maxima at higher frequencies are delayed. These findings can serve as evidence of the hardening of the electron spectrum at energies above some hundreds of keV during the decay phase of cm–mm flux peaks. As a most likely reason for such a hardening we consider Coulomb collisions of energetic electrons continuously injected and trapped in a flaring loop.  相似文献   

3.
4.
We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.  相似文献   

5.
Recent theoretical estimates of the emissivity of fundamental and harmonic radiation in type III solar radio bursts are combined with calculations of electron beam evolution, radiation scattering and propagation delays to estimate dynamic spectra at a remote observer. The burst intensity, brightness temperature, temporal evolution, and dominant mode of emission are then calculated. A simple explanation of the recently observed low-frequency cutoff to type III emission is found and it is noted that some type III beams may propagate without significant radio emission. Criteria for observation of harmonic structure in dynamic spectra are also obtained. The results are shown to be consistent with a wide range of observations.  相似文献   

6.
A model of type III solar radio bursts is developed that incorporates large-angle scattering and reabsorption of fundamental emission amid ambient density fluctuations in the corona and solar wind. Comparison with observations shows that this model accounts semiquantitatively for anomalous harmonic ratios, the exponential decay constant of bursts, burst rise times, and the directivity of fundamental emission. It is concluded that the long emission tail on interplanetary type III bursts is mostly fundamental emission, while much of the anomalous time delay of fundamental relative to harmonic emission from a given location must be ascribed to other causes.  相似文献   

7.
The parameters of type III solar radio sources have been observed to vary approximately as powers of the heliocentric distance. Recent theoretical studies of fundamental and harmonic emission are used to express the power-law exponents in terms of five basic ones. The results are then used to obtain a best fit to these five exponents, consistent with observed values of a set of 13 exponents.  相似文献   

8.
A statistical analysis is made on the correlation between solar proton events with energies >10Mev and solar radio bursts during the four-year period from 1997 November to 2000 November. We examine 28 solar proton events and their corresponding solar radio bursts at 15400, 8800, 4995, 2695, 1415, 606, 410 and 245 MHz. The statistical result shows that there is a close association between solar proton events and ≥3 solar radio bursts occurring at several frequencies, one or two days before. In particular, it is noteworthy that proton events occurring  相似文献   

9.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

10.
A rare Type I-like noise storm was observed with the solar radio spectrometers (1.0-2.0 GHz and 2.60-3.8 GHz) at National Astronomical Observatories of China (NAOC) on September 23, 1998. We concentrate on checking the Type I-like noise storm occurred in the decay phase of a Type IV radio burst. This noise storm consists of many Type I bursts and isolated Type Ⅲ or Type Ⅲ pair bursts. It has a bandwidth of ≤ 0.5 GHz. The duration of each Type Ⅰ burst is of the order of 100-300ms. The total duration is greater than 11 minutes. The circular polarization degree of the components of Type Ⅰ and associated Type Ⅲ bursts are about 40%-100% and almost 100%, respectively, which is greater than that of the background continuum (nearly the precision of our instrument). This short decimetric Type I-like storm may be another kind or the extension of the kind of metric Type Ⅰ storm, and may possess the duality of metric and decimetric radio emission. It may be in favor of an earlier emission mechanism of the fundamental plasma radiation due to the coalescence of Langmuir waves with low-frequency waves.  相似文献   

11.
The aim of this paper is to look at the magnetic helicity structure of an emerging active region and show that both emergence and flaring signatures are consistent with a same sign for magnetic helicity. We present a multiwavelength analysis of an M1.6 flare occurring in the NOAA active region 10365 on 27 May 2003, in which a large new bipole emerges in a decaying active region. The diverging flow pattern and the “tongue” shape of the magnetic field in the photosphere with elongated polarities are highly suggestive of the emergence of a twisted flux tube. The orientation of these tongues indicates the emergence of a flux tube with a right-hand twist (i.e., positive magnetic helicity). The flare signatures in the chromosphere are ribbons observed in Hα by the MSDP spectrograph in the Meudon solar tower and in 1600 Å by TRACE. These ribbons have a J shape and are shifted along the inversion line. The pattern of these ribbons suggests that the flare was triggered by magnetic reconnection at coronal heights below a twisted flux tube of positive helicity, corresponding to that of the observed emergence. It is the first time that such a consistency between the signatures of the emerging flux through the photosphere and flare ribbons has been clearly identified in observations. Another type of ribbons observed during the flare at the periphery of the active region by the MSDP and SOHO/EIT is related to the existence of a null point, which is found high in the corona in a potential field extrapolation. We discuss the interpretation of these secondary brightenings in terms of the “breakout” model and in terms of plasma compression/heating within large-scale separatrices.  相似文献   

12.
Estimating for the frequency drift rates of type III solar bursts is crucial for characterizing their source development in the solar corona. According to Melnik et al. (Solar Phys.269, 335, 2011), the analysis of powerful decameter type III solar bursts, observed in July?–?August 2002, found a linear approximation for the drift rate versus frequency. The conclusion contradicts reliable results of many other well-known solar observations. In this paper we report on the reanalysis of the solar data with a more advanced method. Our study shows that the decameter type III solar bursts of July?–?August 2002, as standard type III bursts, follow a power law in frequency drift rates. We explain the possible reasons for this discrepancy.  相似文献   

13.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

14.
Wang  Huaning  Yan  Yihua  Sakurai  Takashi  Zhang  Mei 《Solar physics》2000,197(2):263-273
The photospheric vector magnetic fields, H and soft X-ray images of AR 7321 were simultaneously observed with the Solar Flare Telescope at Mitaka and the Soft X-ray Telescope of Yohkoh on October 26, 1992, when there was no important activity in this region. Taking the observed photospheric vector magnetic fields as the boundary condition, 3D magnetic fields above the photosphere were computed with a new numerical technique. Then quasi-separatrix layers (QSLs), i.e., regions where 3D magnetic reconnection takes place, were determined in the computed 3D magnetic fields. Since Yohkoh data and Mitaka data were obtained in well-arranged time sequences during the day, the evolution of 3D fields, H features and soft X-ray features in this region can be studied in detail. Through a comparison among the 3D magnetic fields, H features and soft X-ray features, the following results have been obtained: (a) H plages are associated with the portions of QSLs in the chromosphere; (b) diffuse coronal features (DCFs) and bright coronal features (BCFs) are morphologically confined by the coronal linkage of the field lines related to the QSLs; (c) BCFs are associated with a part of the magnetic field lines related to the QSLs. These results suggest that as the likely places where energy release may occur by 3D magnetic reconnection, QSLs play an important role in the chromospheric and coronal heating in this active region.  相似文献   

15.
The aim of this article is to investigate how the background magnetic field of the Sun behaves in different hemispheres. We used SOHO/MDI data obtained during a period of eight years from 2003 to 2011 to analyze the intensity distribution of the background magnetic field over the solar surface. We find that the background fields of both polarities (signs) are more intense in the southern than in the northern hemisphere. Mixed polarities are observed in the vicinity of the equator. In addition to the main field, a weaker field of opposite polarity is always present in the polar regions. In the declining phase of the cycle, the main field dominates, but at the minimum and in the rising phase of the cycle, it is gradually replaced by the growing stronger secondary field.  相似文献   

16.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

17.
Variations of total solar irradiance, 10.7 cm radio emission, the Hei 10830 Ú equivalent width and the solar magnetic field flux measured for the entire Sun are compared with variations of the energy index of the global solar magnetic field and the index of the effective solar multipole for years 1979–1992. It is shown that photospheric radiation and that generated in the upper chromosphere and corona display different relationships with the global magnetic field of the Sun, and that interaction between the magnetic field and the solar irradiance is much more complicated than the traditional blocking effect.  相似文献   

18.
19.
The structure of electric current and magnetic helicity in the solar corona is closely linked to solar activity over the 11-year cycle, yet is poorly understood. As an alternative to traditional current-free “potential-field” extrapolations, we investigate a model for the global coronal magnetic field which is non-potential and time-dependent, following the build-up and transport of magnetic helicity due to flux emergence and large-scale photospheric motions. This helicity concentrates into twisted magnetic flux ropes, which may lose equilibrium and be ejected. Here, we consider how the magnetic structure predicted by this model – in particular the flux ropes – varies over the solar activity cycle, based on photospheric input data from six periods of cycle 23. The number of flux ropes doubles from minimum to maximum, following the total length of photospheric polarity inversion lines. However, the number of flux rope ejections increases by a factor of eight, following the emergence rate of active regions. This is broadly consistent with the observed cycle modulation of coronal mass ejections, although the actual rate of ejections in the simulation is about a fifth of the rate of observed events. The model predicts that, even at minimum, differential rotation will produce sheared, non-potential, magnetic structure at all latitudes.  相似文献   

20.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号