首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The legacy Ooty Radio Telescope (ORT) is being reconfigured as a 264-element synthesis telescope, called the Ooty Wide Field Array (OWFA). Its antenna elements are the contiguous 1.92 m sections of the parabolic cylinder. It will operate in a 38-MHz frequency band centred at 326.5 MHz and will be equipped with a digital receiver including a 264-element spectral correlator with a spectral resolution of 48 kHz. OWFA is designed to retain the benefits of equatorial mount, continuous 9-hour tracking ability and large collecting area of the legacy telescope and use of modern digital techniques to enhance the instantaneous field-of-view by more than an order of magnitude. OWFA has unique advantages for contemporary investigations related to large scale structure, transient events and space weather watch. In this paper, we describe the RF subsystems, digitizers and fibre optic communication of OWFA and highlight some specific aspects of the system relevant for the observations planned during the initial operation.  相似文献   

2.
We describe here an ongoing upgrade to the legacy Ooty Radio Telescope (ORT). The ORT is a cylindrical parabolic cylinder 530 m × 30 m in size operating at a frequency of 326.5 (or z~3.35 for the HI 21-cm line). The telescope has been constructed on a North–South hill slope whose gradient is equal to the latitude of the hill, making it effectively equatorially mounted. The feed consists of an array of 1056 dipoles. The key feature of this upgrade is the digitization and cross-correlation of the signals of every set of 4-dipoles. This converts the ORT into a 264 element interferometer with a field-of-view of 2°×27.4°cos(δ). This upgraded instrument is called the Ooty Wide Field Array (OWFA). This paper briefly describes the salient features of the upgrade, as well as its main science drivers. There are three main science drivers viz. (1) observations of the large scale distribution of HI in the post-reionization era, (2) studies of the propagation of plasma irregularities through the inner heliosphere and (3) blind surveys for transient sources. More details on the upgrade, as well as on the expected science uses can be found in other papers in this special issue.  相似文献   

3.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

4.
Based on the advance predictions of two flare-generated shock fronts, obtained from the Space Environment Centre (SEC, NOAA, Boulder), observations of interplanetary scintillation (IPS) were carried out with the Ooty Radio Telescope (ORT) on a grid of appropriately located sources during the period 31 October to 5 November, 1992. Solar wind velocities were derived by fitting model spectra to the observed spectra and two travelling interplanetary disturbances were detected. Both disturbances were traced back to an active region on the Sun which was located close to a large coronal hole. The roles of flares and coronal holes in producing such disturbances are examined and it is shown that in the present case both the coronal hole and the active region probably played key roles in generating the two IPS disturbances.Currently on a Humboldt Fellowship at the Radioastronomisches Institut, D-53173, Bonn.  相似文献   

5.
The recently refurbished Ooty Radio Telescope in southern India was used in a two-month campaign of interplanetary scintillation (IPS) observations in collaboration with the Cambridge IPS array in England during April–May 1992. The unique feature of this campaign was that, for the first time, scintillation enhancements were predicted in real time by observing solar events on 7–8 May, 1992 and then detected at both Ooty and Cambridge. Also, for the first time, high spatial resolution ( 100 sources sr–1) solar wind all-sky velocity maps were obtained at Ooty. Good consistency is found between the IPS observations from both observatories andin-situ shocks detected at Earth by IMP-8.Yohkoh soft X-ray images were used to infer the generation of a coronal mass ejection on 7 May, 1992.  相似文献   

6.
We have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd, solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was 1016 gm and 1033 erg respectively,3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multicomponent model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.  相似文献   

7.
Gothoskar  Pradeep  Rao  A.P. 《Solar physics》1999,185(2):361-390
Scattering of radio waves by density fluctuations in the solar wind leads to rapid variation in the intensity of compact radio sources. This phenomenon, known as Interplanetary Scintillation (IPS), provides a simple method to study interplanetary activity in the inner heliosphere. During the solar maximum of cycle 22, we carried out extensive, high-time-resolution IPS observations of fast moving interplanetary plasma clouds (IPCs). The observations were done using the Ooty Radio Telescope (ORT) and covered the region between 0.2 AU and 0.8 AU around the Sun. We detected 33 IPCs having velocities of 600 to 1400 km s–1. A two-component model of scattering by time-varying solar wind was developed to analyse these IPCs. The model enabled us to estimate the mass, energy and geometry of each disturbance and to associate them with solar-geomagnetic activity.Detailed analysis suggests that these IPCs were interplanetary signatures of massive and energetic Solar Mass Ejections (SMEs). The SMEs were found to have average mass and kinetic energy of 5.3×1016 g, 2.4×1032 ergs. The average span and width of the SME was found to be 42° and 8×106 km. Association of these disturbances with solar-geomagnetic activity shows that about 80% of them are associated with Long-Duration X-ray Events (LDXE) and Solar Mass Ejections (SMEs). Only 50% of the events were associated with geomagnetic activity. The present experiment has demonstrated that continuous IPS monitoring is an effective technique to detect mass ejections in the interplanetary medium and to study their evolution through the inner heliosphere.  相似文献   

8.
9.
Seven giant radio pulses were recorded from the millisecond pulsar PSR B1937+21 during ≈8.1 min observation by the Ooty Radio Telescope (ORT) at 326.5 MHz. Although sparse, these observations support most of the giant pulse behaviour reported at higher radio frequencies (430 to 2380 MHz). Within the main component of the integrated profile, they are emitted only in a narrow (≲47 μs) window of pulse phase, close to its peak. This has important implications for doing super-high precision timing of PSR B1937+21 at low radio frequencies.  相似文献   

10.
The usefulness of Interplanetary Scintillation (IPS) data, which provide solar wind velocities (V) and relative scintillation indices (g), for predicting interplanetary disturbances is examined. Analysis of two years of g-map data from Cambridge shows that atleast two IPS stations are required for more definitive identification of events. Campaigns were made in April-May 1992 to map predicted solar wind disturbances simultaneously from two widely separated telescopes at Cambridge and Ooty. These show that apriori knowledge of strong flare activity helps in detecting scintillation enhancement. On the other hand, other events have been observed at Ooty, which show that both flares and coronal holes may be responsible for producing, interplanetary disturbances, and hence it is premature to identify any one type of solar event as the sole cause of the disturbances.  相似文献   

11.
Observations of the redshifted 21-cm HI fluctuations promise to be an important probe of the post-reionization era (z≤ 6). In this paper we calculate the expected signal and foregrounds for the upgraded Ooty Radio Telescope (ORT) which operates at frequency ν o = 326.5 MHz which corresponds to redshift z = 3.35. Assuming that the visibilities contain only the HI signal and system noise, we show that a 3 σ detection of the HI signal (~1 mK) is possible at angular scales 11 to 3° with ≈1000 h of observation. Foreground removal is one of the major challenges for a statistical detection of the redshifted 21 cm HI signal. We assess the contribution of different foregrounds and find that the 326.5 MHz sky is dominated by the extragalactic point sources at the angular scales of our interest. The expected total foregrounds are 104?105 times higher than the HI signal.  相似文献   

12.
IPS observations with the Big Scanning Array of Lebedev Physical Institute (BSA LPI) radio telescope at the frequency 111 MHz have been monitored since 2006. All the sources, about several hundred daily, with a scintillating flux greater than 0.2 Jy are recorded for 24 hours in the 16 beams of the radio telescope covering a sky strip of 8° declination width. We present some results of IPS observations for the recent period of low solar activity considering a statistical ensemble of scintillating radio sources. The dependences of the averaged over ensemble scintillation index on heliocentric distance are considerably weaker than the dependence expected for a spherically symmetric geometry. The difference is especially pronounced in the year 2008 during the very deep solar activity minimum period. These features are explained by the influence of the heliospheric current sheet that is seen as a strong concentration of turbulent solar wind plasma aligned with the solar equatorial plane. A local maximum of the scintillation index is found in the anti-solar direction. Future prospects of IPS observations using BSA LPI are briefly discussed.  相似文献   

13.
The Sun affects physical phenomena on Earth in multiple ways.In particular,the material in interplanetary space comes from coronal expansion in the form of inhomogeneous plasma flow (solar wind),which is the primary source of the interplanetary medium.Ground-based Interplanetary Scintillation (IPS) observations are an important and effective method for measuring solar wind speed and the structures of small diameter radio sources.We discuss one mode of ground-based single-station observations: Single-Station Single-Frequency (SSSF) mode.To study the SSSF mode,a new system has been established at Urumqi Astronomical Observatory (UAO),China,and a series of experimental observations were successfully carried out from May to December,2008.  相似文献   

14.
The Low Frequency array (LOFAR) will be a next generation digital aperture synthesis radio telescope covering the frequency range from 10 to 240 MHz. The instrument will feature full polarisation and multi-beaming capability, and is currently in its design phase. This work highlights the solar, heliospheric and space weather applications where LOFAR, with its unique and unprecedented capabilities, can provide useful information inaccessible by any other means. The relevant aspects of the LOFAR baseline design are described, and the most promising techniques of interest are enumerated. These include tracking coronal mass ejections (CMEs) out to large distances using interplanetary scintillation (IPS) methods, tomographic reconstruction of the solar wind in the inner heliosphere using IPS, direct imaging of the radio emission from CMEs and finally possible Faraday rotation studies of the magnetic field structure of the heliosphere and the CMEs. This work is a part of an effort directed towards ensuring the compatibility of LOFAR design with solar and space weather applications, in collaboration with the wider community.  相似文献   

15.
Pulsar scintillation measurements from the Ooty Radio Telescope (ORT) are used to investigate the distribution of scattering in the Local Interstellar Medium (LISM; region of ≲ 1 kpc of the Sun), specifically the region in and around the Local Bubble. A 3-componentmodel, where the Solar neighborhood is surrounded by a shell of enhanced plasma turbulence, is proposed for the LISM. Further, the Ooty data, along with those from Parkes and other telescopes are used for investigating thedistribution of scattering towards the nearby Loop I Superbubble. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We use the Fisher matrix formalism to predict the prospects of measuring the redshifted 21-cm power spectrum in different k-bins using observations with the upcoming Ooty Wide Field Array (OWFA) which will operate at 326.5 MHz. This corresponds to neutral hydrogen (HI) at z = 3.35, and a measurement of the 21-cm power spectrum provides a unique method to probe the large-scale structures at this redshift. Our analysis indicates that a 5σ detection of the binned power spectrum is possible in the k range 0.05 ≤ k ≤ 0.3 Mpc?1 with 1000 hours of observation. We find that the signal- to-noise ratio (SNR) peaks in the k range 0.1?0.2 Mpc?1 where a 10σ detection is possible with 2000 hours of observations. Our analysis also indicates that it is not very advantageous to observe beyond 1000 h in a single field-of-view as the SNR increases rather slowly beyond this in many of the small k-bins. The entire analysis reported here assumes that the foregrounds have been completely removed.  相似文献   

17.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

18.
Results from new observations of pulsars using the Ooty Radio Telescope(ORT) are used for investigating the structure of the Local InterstellarMedium (LISM) and the nature of the plasma turbulence spectrum in theInterstellar Medium (ISM). The observations show anomalous scintillationtowards several nearby pulsars, and these are modelled in terms oflarge-scale spatial inhomogeneities in the distribution of plasma densityfluctuations in the LISM. A 3-component model, where the Solar neighborhoodis surrounded by a shell of enhanced plasma turbulence, is proposed for theLISM. The inferred scattering structure is strikingly similar to the LocalBubble. The nature of the plasma turbulence spectrum is found to be Kolmogorov-like in the spatial scale range 106 m to 1011 m,and there is evidence for excess power at larger spatial scales.  相似文献   

19.
The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, reclining high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME’s). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.  相似文献   

20.
We analyze the 26 November 2005 solar radio event observed interferometrically at frequencies of 244 and 611 MHz by the Giant Metrewave Radio Telescope (GMRT) in Pune, India. These observations are used to make interferometric maps of the event at both frequencies with the time cadence of 1 s from 06:50 to 07:12 UT. These maps reveal several radio sources. The light curves of these sources show that only two sources at 244 MHz and 611 MHz are well correlated in time. The EUV flare is more localized with flare loops located rather away from the radio sources. Using SoHO/MDI observations and potential magnetic field extrapolation we demonstrate that both the correlated sources are located in the fan structure of magnetic field lines starting from a coronal magnetic null point. Wavelet analysis of the light curves of the radio sources detects tadpoles with periods in the range P=10?–?83 s. These wavelet tadpoles indicate the presence of fast magnetoacoustic waves that propagate in the fan structure of the coronal magnetic null point. We estimate the plasma parameters in the studied radio sources and find them consistent with the presented scenario involving the coronal magnetic null point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号