首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgOvs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th–Sc–Zr/10, La–Th–Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V–Ni–Th ?10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ? suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.  相似文献   

2.
The processes of differentiation in the magmatic chamber of the Ioko-Dovyren layered dunite-troctolite-gabbro-gabbronorite massif were simulated using the COMAGMAT-3.5 software package, which is based on the convection-accumulation model for the crystallization of magmatic intrusions. The initial magma composition was assumed to be equal to the weighted mean composition of the rocks composing the intrusion (wt %: 43.92 SiO2, 9.72 Al2O3, 10.53 FeO, 27.88 MgO, 6.99 CaO, 0.59 Na2O, 0.07 K2O, and 0.11 TiO2). The results obtained by simulating the crystallization of this composition within a pressure range of 0–10 kbar indicate that the crystallization sequence determined for the rocks Ol + ChrOl+ Pl+ ChrOl + Pl+ CPx → ± Ol + Pl+ CPx + LowCaPx in an anhydrous system takes place under pressures of 0–2 kbar. A series of simulations for a system closed with respect to oxygen yielded estimates for the phase and chemical composition of the emplaced magma and the parameters of the optimum model, which reproduces accurately enough the geochemical structure of the Ioko-Dovyren intrusion: the naturally occurring distributions of minerals and components in its vertical section. The correlation coefficients between the concentrations of oxides determined in the rocks and calculated within the model are \(r_{MgO,Al_2 O_3 ,CaO} \) ≥ 0.9 and \(r_{FeO,SiO_2 ,Na_2 O} \) ≥ 0.6. The simulated phase composition of the magma during its emplacement corresponded to melt + olivine (Fo 89). The crystallinity of the parental magma was determined to have been equal to approximately 40 vol % at an assumed cumulus density of 90% near the lower contact and 70% near the upper one. The temperature of the magma during its emplacement was close to 1340°C at a pressure of 1 kbar. In the model, plagioclase and clinopyroxene appear on the liquidus at T?1255°C at T?1210°C, respectively, and the crystallization sequence of cumulus minerals corresponds to that observed in nature. The liquid phase (melt) of the parental magma during its emplacement had the following composition (wt %): 45.95 SiO2, 15.93 Al2 O3, 14.49 MgO, 10.88 FeO, 11.46 CaO, 0.97 Na2O, 0.11 K2O, and 0.18 TiO2. Our results confirm the plausibility of the hypothesis that the inner structure of the Ioko-Dovyren intrusion was formed by the emplacement and differentiation of a single magma portion with no less than 40 vol % crystallinity.  相似文献   

3.
Dehoo manganese deposit is located 52 km to the south of Zahedan in Sistan and Baluchestan Province, southeastern Iran. This deposit that lies in the central part of the Iranian Flysch Zone is lenticular in shape and lies above the micritic limestone-radiolarite cherts of the upper Cretaceous ophiolite unit. It is hosted within the reddish to brown radiolarite cherts and in places interlinks with them, so that the radiolarite chert packages play a key role for Mn mineralization in the region. Investigated ore-paragenetic successions and the geochemical characteristics of the Dehoo deposit were studied by means of major oxide, trace, and rare earth element (REE) contents that provide information as to the mineral origin. Strong positive correlations were found between major oxides and trace elements (Al2O3-TiO2, r = 0.95; TiO2-MgO, r = 0.94; Fe2O3-Al2O3, r = 0.90; MgO-Al2O3, r = 0.84; MgO-Fe2O3, r = 0.88; Fe2O3-TiO2, r = 0.91; Fe2O3-K2O, r = 0.74; Al2O3-K2O, r = 0.69; Al2O3-V, r = 0.72; TiO2-V, r = 0.73, and MgO-V, r = 0.69) that testify to the contribution of mafic terrigenous detrital material to the deposit. Chondrite-normalized REE patterns of all ore samples are characterized by negative Ce (0.06–0.15, average 0.10) and slightly positive Eu (0.29–0.45, average 0.36) anomalies. Based on ratios of Mn/Fe (average 56.23), Co/Ni (average 0.33), Co/Zn (average 0.38), U/Th (average 3.40), La/Ce (average 1.45), Lan/Ndn (average 2.16), Dyn/Ybn (average 0.33), and light REE/heavy REE (average 8.40; LREE > HREE), as well as Ba (average 920 ppm) and total REE contents (average 6.96 ppm) negative Ce and positive Eu anomalies, Dehoo could be considered a predominantly submarine hydrothermal Mn deposit complemented by terrigenous detrital mafic material.  相似文献   

4.
Chesnokovite, a new mineral species, is the first natural sodium orthosilicate. It has been found in an ussingite vein uncovered by underground mining at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. Natrolite, sodalite, vuonnemite, steenstrupine-(Ce), phosinaite-(Ce), natisite, gobbinsite, villiaumite, and natrosilite are associated minerals. Chesnokovite occurs as intergrowths with natrophospate in pockets up to 4 × 6 × 10 cm in size consisting of chaotic segregations of coarse lamellar crystals (up to 0.05 × 1 × 2 cm in size) flattened along [010]. The crystals are colorless and transparent. The aggregates are white to pale brownish yellowish, with a white streak and a vitreous luster. The cleavage is perfect parallel to (010) and distinct to (100) and (001). The fracture is stepped. The Mohs’ hardness is 2.5. The measured density is 1.68 g/cm3; the density calculated on the basis of an empirical formula is 1.60 g/cm3 and 1.64 g/cm3 on the basis of an idealized formula. The new mineral is optically biaxial, positive, α = 1.449, β = 1.453, γ = 1.458, 2V meas = 80°, and Z = b. The infrared spectrum is given. The chemical composition (Si determined with electron microprobe; Na, K, and Li, with atomic emission analysis; and H2O, with the Alimarin method) is as follows, wt %: 21.49 Na2O, 0.38 K2O, 0.003 Li2O, 21.42 SiO2, 54.86 H2O, total is 98.153. The empirical formula calculated on the basis of O2(OH)2 is as follows: (Na1.96K0.02)Σ1.98Si1.005O2(OH)2 · 7.58H2O. The simplified formula (Z = 8) is Na2[SiO2(OH)2] · 8H2O. The new mineral is orthorhombic, and the space group is Ibca. The unit-cell dimensions are: a = 11.7119, b = 19.973, c = 11.5652 Å, and V = 2299.0 Å3. The strongest reflections in the X-ray powder pattern [d, Å (I, %)(hkl)] are: 5.001(30)(211), 4.788(42)(022), 3.847(89)(231), 2.932(42)(400), 2.832(35)(060), 2.800(97)(332, 233), and 2.774(100)(341, 143, 114). The crystal structure was studied using the Rietveld method, R p = 5.77, R wp = 7.77, R B = 2.07, and R F = 1.74. The structure is composed of isolated [SiO2(OH)2] octahedrons and the chains of edge-shared [Na[H2O)6] octahedrons. The Si and Na polyhedrons are linked only by H-bonds, and this is the cause of the low stability of chesnokovite under atmospheric conditions. The new mineral is named in memory of B.V. Chesnokov (1928–2005), an outstanding mineralogist. The type material of chesnokovite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

5.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

6.
A new mineral, yegorovite, has been identified in the late hydrothermal, low-temperature assemblage of the Palitra hyperalkaline pegmatite at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. The mineral is intimately associated with revdite and megacyclite, earlier natrosilite, microcline, and villiaumite. Yegorovite occurs as coarse, usually split prismatic (up to 0.05 × 0.15 × 1 mm) or lamellar (up to 0.05 × 0.7 × 0.8 mm) crystals. Polysynthetic twins and parallel intergrowths are typical. Mineral individuals are combined in bunches or chaotic groups (up to 2 mm); radial-lamellar clusters are less frequent. Yegorovite is colorless, transparent with vitreous luster. Cleavage is perfect parallel to (010) and (001). Fracture is splintery; crystals are readily split into acicular fragments. The Mohs hardness is ~2. Density is 1.90(2) g/cm3 (meas) and 1.92 g/cm3 (calc). Yegorovite is biaxial (?), with α = 1.474(2), β = 1.479(2), and γ = 1.482(2), 2V meas > 70°, 2V calc = 75°. The optical orientation is Xa ~ 15°, Y = c, Z = b. The IR spectrum is given. The chemical composition determined using an electron microprobe (H2O determined from total deficiency) is (wt %): 23.28 Na2O, 45.45 SiO2, 31.27 H2Ocalc; the total is 100.00. The empirical formula is Na3.98Si4.01O8.02(OH)3.98 · 7.205H2O. The idealized formula is Na4[Si4O8(OH)4] · 7H2O. Yegorovite is monoclinic, space group P21/c. The unit-cell dimensions are a = 9.874, b= 12.398, c = 14.897 Å, β = 104.68°, V = 1764.3 Å3, Z = 4. The strongest reflections in the X-ray powder pattern (d, Å (I, %)([hkl]) are 7.21(70)[002], 6.21(72)[012, 020], 4.696(44)[022], 4.003(49)[211], 3.734(46)[\(\bar 2\) 13], 3.116(100)[024, 040], 2.463(38)[\(\bar 4\)02, \(\bar 2\)43]. The crystal structure was studied by single-crystal method, R hkl = 0.0745. Yegorovite is a representative of a new structural type. Its structure consists of single chains of Si tetrahedrons [Si4O8(OH)4]∞ and sixfold polyhedrons of two types: [NaO(OH)2(H2O)3] and [NaO(OH)(H2O)4] centered by Na. The mineral was named in memory of Yu. K. Yegorov-Tismenko (1938–2007), outstanding Russian crystallographer and crystallochemist. The type material of yegorovite has been deposited at the Fersman Mineralogical Museum of Russian Academy of Sciences, Moscow.  相似文献   

7.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   

8.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

9.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

10.
The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (?K 0,T /?T) P  = ?0.023 ± 0.006 GPa K?1, and α0,T  = 3.09 ± 0.25 × 10?5 K?1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.  相似文献   

11.
We analyze three-phase flow of immiscible fluids taking place within an elementary capillary tube with circular cross-section under water- and oil-wet conditions. We account explicitly for momentum transfer between the moving phases, which leads to the phenomenon of viscous coupling, by imposing continuity of velocity and shear stress at fluid-fluid interfaces. The macroscopic flow model which describes the system at the Darcy scale includes three-phase effective relative permeabilities, K i j,r , accounting for the flux of the ith phase due to the presence of the jth phase. These effective parameters strongly depend on phase saturations, fluid viscosities, and wettability of the solid matrix. In the considered flow setting, K i j,r reduce to a set of nine scalar quantities, K i j,r . Our results show that K i j,r of the wetting phase is a function only of the fluid phase own saturation. Otherwise, K i j,r of the non-wetting phase depends on the saturation of all fluids in the system and on oil and water viscosities. Viscous coupling effects (encapsulated in K i j,r with ij) can be significantly relevant in both water- and oil-wet systems. Wettability conditions influence oil flow at a rate that increases linearly with viscosity ratio between oil and water phases.  相似文献   

12.
Voloshinite, a new mineral of the mica group, a rubidium analogue of lepidolite, has been found from the rare-element granitic pegmatite at Mt. Vasin-Myl’k, Voron’i Tundras, Kola Peninsula, Russia. It is closely associated with pollucite and lepidolite and commonly with muscovite, albite, and quartz; K,Rb-feldspar, rubicline, spodumene, montebrasite, and elbaite are among associated minerals as well. Voloshinite, a late mineral that formed after pollucite, commonly fills polymineralic veinlets and pods within the pollucite aggregates. It occurs as rims up to 0.05 mm thick around lepidolite, as intergrowths of tabular crystals up to 0.25 mm in size, and occasionally replaces lepidolite. The new mineral is colorless, transparent, with vitreous luster. Cleavage is eminent parallel to {001}; flakes are flexible. The calculated density is 2.95 g/cm3. The new mineral is biaxial (?), with 2V = 25°, α calc = 1.511, β = 1.586, and γ = 1.590. The optical orientation is Y = b, Z = a. The chemical composition of the type material determined by electron microprobe (average of five point analyses; Li has been determined with ICP-OES) is as follows (wt %): 0.03 Na2O, 3.70 K2O, 12.18 Rb2O, 2.02 Cs2O, 4.0 Li2O, 0.03 CaO, 0.02 MgO, 0.14 MnO, 21.33 Al2O3, 53.14 SiO2, 6.41 F, -O = F2 2.70, total is 100.30. The empirical formula is: (Rb0.54K0.33Cs0.06)Σ0.93(Al1.42Li1.11Mn0.01)Σ2.54(Si3.68Al0.32)Σ4O10 (F1.40(OH)0.60)Σ2. The idealized formula is as follows: Rb(LiAl1.50.5)[Al0.5Si3.5O10]F2. Voloshinite forms a continuous solid solution with lepidolite. According to X-ray single crystal study, voloshinite is monoclinic, space group C2/c. The unit-cell dimensions are: a = 5.191, b = 9.025, c = 20.40 Å, β = 95.37°, V= 951.5 Å3, Z = 4. Polytype is 2M 1. The strongest reflections in the X-ray powder diffraction pattern (d, Å-I[hkl]) are: 10.1-60[001]; 4.55-80[020, 110, 11\(\bar 1\)]; 3.49-50[11\(\bar 4\)]; 3.35-60[024, 006]; 3.02-45[025]; 2.575-100[11\(\bar 6\), 131, 20\(\bar 2\), 13\(\bar 4\)], 2.017-50[136, 0.0.10]. The mineral was named in honor of A.V. Voloshin (born in 1937), the famous Russian mineralogist. The type material is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow.  相似文献   

13.
The high-pressure behaviour and the P-induced structural evolution of a synthetic zeolite Rb7NaGa8Si12O40·3H2O (with edingtonite-type structure) were investigated both by in situ synchrotron powder diffraction (with a diamond anvil cell and the methanol:ethanol:water = 16:3:1 mixture as pressure-transmitting fluid) up to 3.27 GPa and by ab initio first-principles computational modelling. No evidence of phase transition or penetration of P-fluid molecules was observed within the P-range investigated. The isothermal equation of state was determined; V 0 and K T0 refined with a second-order Birch–Murnaghan equation of state are V 0 = 1311.3(2) Å3 and K T0 = 29.8(7) GPa. The main deformation mechanism (at the atomic scale) in response to the applied pressure is represented by the cooperative rotation of the secondary building units (SBU) about their chain axis (i.e. [001]). The direct consequence of SBU anti-rotation on the zeolitic channels parallel to [001] is the increase in pore ellipticity with pressure, in response to the extension of the major axis and to the contraction of the minor axis of the elliptical channel parallel to [001]. The effect of the applied pressure on the bonding configuration of the extra-framework content is only secondary. A comparison between the P-induced main deformation mechanisms observed in Rb7NaGa8Si12O40·3H2O and those previously found in natural fibrous zeolites is made.  相似文献   

14.
Aqualite, a new eudialyte-group mineral from hydrothermally altered peralkaline pegmatites of the Inagli alkaline pluton (Sakha-Yakutia, Russia) is described in this paper. Natrolite, microcline, eckermanite, aegirine, batisite, innelite, lorezenite, thorite, and galena are associated minerals. Aqualite occurs as isometric crystals up to 3-cm across. The color is pale pink, with a white streak and vitreous luster. The mineral is transparent. The fracture is conchoidal. The mineral is brittle; no cleavage or parting is observed. The Mohs’ hardness is 4 to 5. The density is 2.58(2) g/cm3 (measured by the volumetric method) and 2.66 g/cm3 (calculated). Aqualite is optically uniaxial (+), α = 1.569(1) and β = 1.571(1). The mineral is pleochroic from colorless to pale pink on X and pink on Y, α < β. Aqualite is weakly fluorescent with a dull yellow color under ultraviolet light. The mineral is stable in 50% HCl and HNO3 at room temperature. Weight loss after ignition at 500°C is 9.8%. Aqualite is monoclinic, and the space group is R3. The unit-cell dimensions are a = 14.078(3) Å, c = 31.24(1) Å, V = 5362 Å3, and Z = 3. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 4.39(100)(2005), 2.987(100)(315), 2.850(79)(404), 10.50(44)(003), 6.63(43)(104), 7.06(42)(110), 3.624(41)(027), and 11.43(39)(101). The chemical composition (electron microprobe, H2O determined with the Penfield method) is as follows (wt %): 2.91 Na2O, 1.93 K2O, 11.14 CaO, 1.75 SrO, 2.41 BaO, 0.56 FeO, 0.30 MnO, 0.17 La2O3, 0.54 Ce2O3, 0.36 Nd2O3, 0.34 Al2O3, 52.70 SiO2, 12.33 ZrO2, O.78 TiO2, 0.15 Nb2O5; 1.50 Cl, 9.93 H2O,-O=Cl2 0.34; where the total is 99.46. The empirical formula calculated on the basis of Si + Zr + Ti + Al + Nb = 29 apfu is as follows: [(H3O)7.94Na2.74K1.20Sr0.49Ba0.46Fe0.23Mn0.12]Σ13.18(Ca5.79REE0.19)Σ5.98 (Zr2.92Ti0.08)Σ3.0(Si25.57Ti0.21Al0.19Nb0.03)S26.0[O66.46(OH)5.54]Σ72.0 [(OH)2.77Cl1.23]Σ4.0. The simplified formula is (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl. Aqualite differs from typical eudialyte by the extremely low contents of Na and Fe, with more than 50% Na being replaced with the (H3O)+ group. The presence of oxonium ions is confirmed by IR spectroscopic and X-ray single-crystal diffraction analysis. The mineral is compared with five structurally studied high-oxonium analogues from alkaline plutons of other regions. All of these minerals were formed at a relatively low temperature through the ion-exchange transformation of “protoeudialytes”; the successor minerals inherited the principal structural and compositional features of the precursor minerals. The name aqualite is derived from the Latin aqua in reference to its specific chemical composition. The type material of aqualite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

15.
Interaction between natural pargasite [Prg, SiO2 = 43.89 wt %, FeO/(FeO + MgO) = 0.35, (Na + K)A = 0.51] and H2O–NaCl fluid, whose composition (NaCl mole fraction) varied within the range X NaCl = NaCl/(NaCl + H2O) = 0–0.45, was experimentally studied in an internally heated apparatus at 900°C and 500 MPa. Natural pargasite begins to melt at a temperature 120–150°C lower than its synthetic analogue. In the presence of pure H2O, the subliquidus mineral assemblage involves amphibole Hbl 1, whose composition is closely similar to the starting Prg, clinopyroxene Cpx, calcic plagioclase Pl, and minor amounts of hercynite-magnetite spinel. With increasing X NaCl, the subliquidus assemblage systematically changed: calcic plagioclase disappeared and more Fe- rich amphibole Hbl 2 appeared at X NaCl = 0.07; Cpx disappeared at X NaCl = 0.14; and appearance of Na-Phl compositionally close to wonesite and almost complete disappearance of Hbl 1 was observed at X NaCl = 0.31. The composition of the melt also changed: its Na2O gradually increased (from 1.5 to 9–10 wt %), and CaO and SiO2 decreased(from 8.6 to 2 wt % and from 64 to 60 wt %, respectively, in recalculation to the anhydrous basis); at X NaCl ≥ 0.35, the melt was transformed from quartz- to nepheline-normative. The maximum Cl concentration of 1.2 wt % was measured in the melt poorest in SiO2. The experimental products contained spherical objects less than 10 μm in diameter that consisted of material that precipitated from the quenched fluid. These particles are richer than the melt in SiO2 (62–80 wt %) and poorer in Al2O3 (11–19 wt %) in experiments with X NaCl ≤ 0.24, but the differences between the compositions of the melt and particles decreased with increasing XNaCl. The relatively high concentrations of aluminosilicate material in the fluid is most likely explained by the high solubility of the melt in the fluid phase, with the formation in the fluid aqueous Si, Al–Si, Na–Al–Si, and other polymeric species. It is suggested that interaction of host rocks with such fluids, rich in granitic components, might be responsible for granitization (charnockitization) of mafic, and, particularly, ultramafic rocks described in the literature.  相似文献   

16.
The sandstones of the Ridge and Athleta members of Chari Formation (Callovian-Oxfordian) exposed at Jara have been analyzed for their petrographical and geochemical studies. Texturally, these sandstones are medium to coarse grained, poorly to well sorted, sub-angular to sub-rounded, and show low to medium sphericity. These sandstones were derived from a mixed provenance including granites, granite-gneisses, low and high-grade metamorphic, and some basic rocks of Aravalli range and Nagarparkar massif. The petrofacies analysis reveals that these sandstones belong to the continental block and recycled orogen tectonic regime. The studied sandstones are modified by paleoclimate, distance of transport, and diagenesis. Mineralogically and geochemically, sandstones are classified as quartzarenite, subarkose, arkose, sublithic arenite, and wacke, respectively. The A-CN-K ternary plot and CIA, CIW, PIA, and ICV values suggest that the similar source rocks suffered moderate to high chemical weathering under a hot-humid climate in an acidic environment with higher \({\text{P}}_{{{\text{CO}}_{ 2} }}\). Generally good to strong correlations between Al2O3 and other oxides in these sediments indicate clay mineral control. The K2O/Na2O versus SiO2 diagram indicates that the studied samples occupy passive margin fields but the SiO2/Al2O3 versus K2O/Na2O plot suggests that the Athleta Sandstone and Ridge Sandstone fall within the passive margin field, while Ridge Shale falls within the active continental margin field.  相似文献   

17.
The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.  相似文献   

18.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

19.
We experimentally investigated the dissolution of forsterite, enstatite and magnesite in graphite-saturated COH fluids, synthesized using a rocking piston cylinder apparatus at pressures from 1.0 to 2.1 GPa and temperatures from 700 to 1200 °C. Synthetic forsterite, enstatite, and nearly pure natural magnesite were used as starting materials. Redox conditions were buffered by Ni–NiO–H2O (ΔFMQ = ??0.21 to ??1.01), employing a double-capsule setting. Fluids, binary H2O–CO2 mixtures at the P, T, and fO2 conditions investigated, were generated from graphite, oxalic acid anhydrous (H2C2O4) and water. Their dissolved solute loads were analyzed through an improved version of the cryogenic technique, which takes into account the complexities associated with the presence of CO2-bearing fluids. The experimental data show that forsterite?+?enstatite solubility in H2O–CO2 fluids is higher compared to pure water, both in terms of dissolved silica (mSiO2?=?1.24 mol/kgH2O versus mSiO2?=?0.22 mol/kgH2O at P?=?1 GPa, T?=?800 °C) and magnesia (mMgO?=?1.08 mol/kgH2O versus mMgO?=?0.28 mol/kgH2O) probably due to the formation of organic C–Mg–Si complexes. Our experimental results show that at low temperature conditions, a graphite-saturated H2O–CO2 fluid interacting with a simplified model mantle composition, characterized by low MgO/SiO2 ratios, would lead to the formation of significant amounts of enstatite if solute concentrations are equal, while at higher temperatures these fluid, characterized by MgO/SiO2 ratios comparable with that of olivine, would be less effective in metasomatizing the surrounding rocks. However, the molality of COH fluids increases with pressure and temperature, and quintuplicates with respect to the carbon-free aqueous fluids. Therefore, the amount of fluid required to metasomatize the mantle decreases in the presence of carbon at high PT conditions. COH fluids are thus effective carriers of C, Mg and Si in the mantle wedge up to the shallowest level of the upper mantle.  相似文献   

20.
Thaumasite, Ca3Si(OH)6(CO3)(SO4)12H2O, occurs as a low-temperature secondary alteration phase in mafic igneous and metamorphic rocks, and is recognized as a product and indicator of sulfate attack in Portland cement. It is also the only mineral known to contain silicon in six-coordination with hydroxyl (OH)? that is stable at ambient PT conditions. Thermal expansion of the various components of this unusual structure has been determined from single-crystal X-ray structure refinements of natural thaumasite at 130 and 298 K. No phase transitions were observed over this temperature range. Cell parameters at room temperature are: a= 11.0538(6) Å, c=10.4111(8) Å and V=1101.67(10) Å3, and were measured at intervals of about 50 K between 130 and 298 K, resulting in mean axial and volumetric coefficients of thermal expansion (×10?5K?1); α a =1.7(1), α c =2.1(2), and α V =5.6(2). Although the unit cell and VIIICaO8 polyhedra show significant positive thermal expansion over this temperature range, the silicate octahedron, sulfate tetrahedron, and carbonate group show zero or negative thermal expansion, with α V (VISiO6) = ?0.6 ± 1.1, α V (IVSO4)=?5.8 ± 1.4, and α R (C–O)= 0.0 ± 1.8 (×10?5 K?1). Most of the thermal expansion is accommodated by lengthening of the R(O...O) hydrogen bond distances by on average 5σ, although the hydrogen bonds involving hydroxyl sites on VISi expand twice as much as those on molecular water, causing the [Ca3Si(OH)6(H2O)12]4+ columns to expand in diameter more than they move apart over this temperature range. The average Si–OH bond length of the six-coordinated Si atom 〈R(VISi–OH)〉 in thaumasite is 1.783(1) Å, being about 0.02 Å (?20σ) shorter than VISi–OH in the dense hydrous magnesium silicate, phase D, MgSi2H2O6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号