首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixing of metals in the intergalactic gas when a galaxy with a metal-rich envelope moves through the intergalactic medium is analyzed. Two simple models for the initial distribution of metals are considered. In the first case, the metals are concentrated in a fairly thin envelope with thickness ΔR s =1 kpc, outer radius R s =31 kpc, and metallicity Z=10?3. In the second case, material with the same metallicity uniformly fills an entire spherical region of radius R s . After 2.85 Gyr, the metals are distributed over a fairly extended volume with a typical size of ?200 kpc in the direction of the motion of the intergalactic gas, with a mean metallicity of ?4.6×10?4 in metal-enriched regions. However, the distribution of metals remains extremely nonuniform, so that the main contribution to the overall metallicity is provided by metal-rich islands Z?6×10?4 that occupy only ~10% of the total mixing volume. Moreover, metal-free regions remain in this volume.  相似文献   

2.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

3.
Maps of the radio source 3C 120 obtained from VLBA+ observations at 8.4 GHz at five epochs in January–September 2002 are presented. The images were reconstructed using the maximum entropy method and the Pulkovo VLBImager software package for VLBI mapping. Apparent superluminal motions of the brightest jet knots have been estimated. The speeds of jet knots decreases with distance from the core, changing from (5.40±0.48)c to (2.00±0.48)c over 10 mas (where c is the speed of light) for a Hubble constant of 65 km s?1 Mpc?1. This can be explained by interaction of the jet with the medium through which it propagates.  相似文献   

4.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

5.
Rainfall-induced landslides (RILs) have been a source of social and economic disruption in the mountainous Baguio area in northern Philippines. Prolonged heavy rainfall usually happens during tropical cyclone and southwest monsoon activity. A pragmatic approach to RIL mitigation is to develop rainfall-based early warning. We implemented a modified regression method to derive the empirical minimum intensity (I)–duration (D) threshold I = 6.46 D ?0.28 and a normalized ID threshold NI = 0.002 D ?0.28 for rainfall duration ranging between 24 and 264 h. Using a separate data set to evaluate the applicability of the threshold, 93% of the landslide-triggering rainfall events fell above the derived threshold. RILs also occurred when 24-h rainfall was 0.02–28% of the mean annual precipitation or after accumulating at least 500 mm of rainfall from the onset of the rainy season. The thresholds may be further refined as more landslide data become available in the future.  相似文献   

6.
The presence of domoic acid (DA) toxin from multiple species of Pseudo-nitzschia is a concern in the highly productive food webs of the northern Gulf of Mexico. We documented the Pseudo-nitzschia presence, abundance, blooms, and toxicity over three years along a transect ~100 km west of the Mississippi River Delta on the continental shelf. Pseudo-nitzschia were present throughout the year and occurred in high abundances (>104 cells l?1) in the early spring months during high Mississippi River (MSR) flow (~20,000 m3 s?1) but were most abundant (>106 cells l?1) when MSR discharge was relatively lower among the spring months. A high particulate toxin production (maximum reaching 13 μg DA l?1) was associated with the high cell abundances and exceeded, by an order of magnitude, prior reports of particulate DA concentrations in Louisiana coastal waters. Differences in Pseudo-nitzschia peak times and its toxicity were correlated mainly with the timing and magnitude of MSR discharge and changes in associated parameters such as nutrient stoichiometry and salinity. A negative relationship between high MSR discharge and Pseudo-nitzschia and particulate DA concentrations was documented. These riverine dynamics have the potential to influence DA contamination in pelagic and benthic food webs in the coastal waters of the northern Gulf of Mexico.  相似文献   

7.
Our analysis of many years of infrared photometry of the unique object FG Sge indicates that the dust envelope formed around the supergiant in August 1992 is spherically symmetrical and contains compact, dense dust clouds. The emission from the spherically symmetrical dust envelope is consistent with the observed radiation from the star at 3.5–5 µm, and the presence of the dust clouds can explain the radiation observed at 1.25–2.2 µm. The mean integrated flux from the dust envelope in 1992–2001 was ~(1.0±0.2)×10?8 erg s?1cm?2. The variations of its optical depth in 1992–2001 were within 0.5–1.0. The maximum density of the dust envelope was recorded in the second half of 1993 and corresponded to mean optical depths as high as unity. Several times in the interval from 1992 to 2001, the dusty material of the envelope partially dissipated and was then replenished. For example, the optical depth of the dust cloud at λ=1.25 µm during the last brigthness minimum in the J band was τ1.25≈4.3, which is much higher than the optical depth of the dust envelope of FG Sge. During maxima of the J brightness, the mean spectral energy distribution at 0.36–5 µm can be represented as a combination of radiation from a G0 supergiant that is attenuated by a dust envelope with a mean optical depth of 0.65±0.15 and emission from the spherically symmetrical dust envelope itself, with the temperature of the graphite grains being 750±150 K. At minima of the J brightness, only radiation from the dust envelope is observed at 1.65–5 µm, with the radiation from the supergiant barely detectable at 1.25 µm. As a result, the integrated flux during J minima is almost half that during J maxima. The mean mass of the spherically symmetrical dust envelope of FG Sge in 1992–2001 was (3 ± 1) × 10?7M. This envelope’s mass varied by nearly a factor of two during 1992–2001, in the range (2 – 4) × 10?7M. In Autumn 1992, the mass-loss rate from the supergiant exceeded 2 × 10?7M/yr. The average rate at which matter was injected into the envelope during 1993–2001 was 10?8M/yr. The mean rate of dissipation of the dust envelope was about 1 × 10?8M/yr. During 1992–2001, the supergiant lost about 8.7 × 10?7M. The parameters of the dust envelope were relatively constant from 1999 until the middle of 2001.  相似文献   

8.
The impact of erosion control geotextiles on the surface runoff from slopes is quite variable and depends strongly on site-specific conditions (soil characteristics, slope morphology, climate, etc.), as has been shown in several earlier studies. In addition, little is known about the proportion of runoff reduction that is caused by the geotextile and the proportion that is caused by soil characteristics. To shed more light on this issue, an experiment was carried out to test the impact of 500 g m?2 jute nets (J500) and 400 g m?2; 700 g m?2 coir nets (C400, C700) on the surface runoff from simulated rainfall of four different intensities (I 1 = 18.7; I 2 = 27.2; I 3 = 53.6; I 4 = 90.5 mm h?1). Data on runoff volume, peak discharge and time to peak discharge were collected from 40 simulated rainfall events. An impermeable “no-soil” subgrade was used to examine the impact of the geotextile on runoff without any influence of soil. All tested geotextiles significantly reduced runoff (volume, peak discharge) at all rainfall intensities, with the exception of C400 and C700 during simulated rainfall intensity I 4. J500 seemed to have the most effective runoff reduction performance at all rainfall intensities. In general, as the rainfall intensity increased, the effectiveness of the geotextiles decreased. Interesting behaviour was observed for J500 under simulated rainfall intensity I 4—the effectiveness of the geotextile increased with the duration of the rainfall.  相似文献   

9.
Timing of highly stable millisecond pulsars provides the possibility of independently verifying terrestrial time scales on intervals longer than a year. An ensemble pulsar time scale is constructed based on pulsar timing data obtained on the 64-m Parkes telescope (Australia) in 1995–2010. Optimal Wiener filters were applied to enhance the accuracy of the ensemble time scale. The run of the time-scale difference PTens?TT(BIPM2011) does not exceed 0.8 ± 0.4 μs over the entire studied time interval. The fractional instability of the difference PTens?TT(BIPM2011) over 15 years is σ z = (0.6 ± 1.6) × 10?15, which corresponds to an upper limit for the energy density of the gravitational-wave background Ω g h2 ~ 10?10 and variations in the gravitational potential ~10?15 Hz at the frequency 2 × 10?9 Hz.  相似文献   

10.
The thermoelastic parameters of the CAS phase (CaAl4Si2O11) were examined by in situ high-pressure (up to 23.7 GPa) and high-temperature (up to 2,100 K) synchrotron X-ray diffraction, using a Kawai-type multi-anvil press. PV data at room temperature fitted to a third-order Birch–Murnaghan equation of state (BM EOS) yielded: V 0,300 = 324.2 ± 0.2 Å3 and K 0,300 = 164 ± 6 GPa for K′ 0,300 = 6.2 ± 0.8. With K′ 0,300 fixed to 4.0, we obtained: V 0,300 = 324.0 ± 0.1 Å3 and K 0,300 = 180 ± 1 GPa. Fitting our PVT data with a modified high-temperature BM EOS, we obtained: V 0,300 = 324.2 ± 0.1 Å3, K 0,300 = 171 ± 5 GPa, K′ 0,300 = 5.1 ± 0.6 (?K 0,T /?T) P  = ?0.023 ± 0.006 GPa K?1, and α0,T  = 3.09 ± 0.25 × 10?5 K?1. Using the equation of state parameters of the CAS phase determined in the present study, we calculated a density profile of a hypothetical continental crust that would contain ~10 vol% of CaAl4Si2O11. Because of the higher density compared with the coexisting minerals, the CAS phase is expected to be a plunging agent for continental crust subducted in the transition zone. On the other hand, because of the lower density compared with lower mantle minerals, the CAS phase is expected to remain buoyant in the lowermost part of the transition zone.  相似文献   

11.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

12.
Radio flux measurements of the Crab nebula have been performed over many years relative to Orion A at 927 MHz and relative to Cygnus A and Virgo A at 151.5 MHz. The inferred average secular rates of decrease in the radio flux of the Crab nebula are d 927 MHz = ?0.18 ± 0.10% yr?1 over 1977–2000 and d 151.5 MHz = ?0.3 ± 0.1% yr?1 over 1980–2003. The weighted mean flux-decrease rate averaged over several years of relative measurements at 86, 151.5, 927, and 8000 MHz is d mw = ?0.17 ± 0.02% yr?1. The secular flux decrease is frequency independent, with an upper limit of |dα/dt| < 3 × 10?4 yr?1 for the absolute value of the rate of change of the spectral index, and remains constant in time when averaged over long time intervals. The results of our measurements at 151.5 and 927 MHz combined with published absolute measurements at 81.5 and 8250 MHz are used to determine the radio spectrum of the Crab nebula for epoch 2010.0.  相似文献   

13.
In the present study, four different heuristic techniques viz. multi-layer perceptron (MLP), radial basis function (RBF), self-organizing maps (SOM), and co-active neuro-fuzzy inference system (CANFIS) with hyperbolic tangent and sigmoid transfer functions and two regression-based techniques, i.e., multiple linear regression (MLR) and sediment-rating curve (SRC), were used for suspended sediment modeling. Gamma test (GT), correlation function (CF), M test, and trail–error procedure were applied for estimation of appropriate input variables as well as training data length. The results of the GT and CF suggested the five input variables (Qt, Qt?1, Qt?2, St?1, and St?2, where Qt?1 and St?1 indicate the discharge and sediment values of one previous day) as the best combination. The optimal training data length (75% of total data) was estimated by M test and trail–error procedure for development of the applied models. The MLP with sigmoid transfer function (M-2) performed better than the all other models. The results of sensitivity analysis indicated that the present-day discharge (Qt), 1-day lag discharge (Qt?1) and 1-day lag suspended sediment (St?1) are the most influenced parameters in modeling current day suspended sediment (St).  相似文献   

14.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   

15.
Observations of the molecular cloud G1.6-0.025 in the 2K-1K and J0-J?1E series and 5?1-40E line of CH3OH, the (2-1) and (3-2) lines of SiO, and the 7?7-6?6 line of HNCO are described. Maps of the previously observed extended cloud with Vlsr~50 km/s and high-velocity clump with Vlsr~160 km/s, as well as a newly detected clump with Vlsr~0 km/s, have been obtained. The extended cloud and high-velocity clump have a nonuniform structure. The linewidths associated with all the objects are between 20 and 35 km/s, as is typical of clouds of the Galactic center. In some directions, emission at velocities from 40 to 160 km/s and from ?10 to +75 km/s is observed at the clump boundaries, testifying to a connection between the extended cloud and the high-velocity clump and clump at Vlsr~0 km/s. Compact maser sources are probaby contributing appreciably to the emission of the extended cloud in the 5?1-40E CH3OH line. Non-LTE modeling of the methanol emission shows that the extended cloud and high-velocity clump have a relatively low hydrogen density (<104 cm?3). The specific column density of methanol in the extended cloud exceeds 6×108 cm?3s, and is 4×108?6×109 cm?3s in the high-velocity clump. The kinetic temperatures of the extended cloud and high-velocity clump are estimated to be <80 K and 150–200 K, respectively. Possible mechanisms that can explain the link between the extended cloud with Vlsr~50 km/s and the clumps with Vlsr~0 km/s and ~160 km/s are briefly discussed.  相似文献   

16.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

17.
Twenty-eight CS molecular clouds toward HII regions with Galactocentric distances from ~ 4 to 20 kpc have been studied based on observations obtained in the J=2→1 lines of CS and C34S on the 20-meter radio telescope of the Onsala Space Observatory (Sweden) in March 2001. All 28 clouds have been mapped with an angular resolution of ~40″. The peak intensity in the C34S line has been measured for 20 objects. An LTE analysis has been performed and the parameters of the molecular cloud cores derived. The core sizes are dA=0.3–4.8 pc, with a median value of ~1.6 pc. The mean hydrogen densities in the cloud cores are nH2=3.5×102–3.7 × 104 cm?3, with a median value of ~7.2×103 cm?3. The value of nH2 ends to decrease with increasing Galactocentric distance of the cloud. The masses of most clouds are 102?6×103M, with the most probable value being MCS~103M. The data follow the dependence MCSd A (2.4–3.2) . As a rule, the cloud masses are lower than the virial masses for MCS<103M.  相似文献   

18.
Photometric observations of the variable star ASASSN-13cx acquired in the course of a program of studies of cataclysmic variables and their parameters recently carried out at the Sternberg Astronomical Institute (SAI) are presented. The star was observed with the 50-cm and 60-cm telescopes of the SAI Crimean Astronomical Station and a CCD photometer (~1800 images in the V and Rc filters) during the variable’s outburst of August–September 2014 and in a period of quiescence in October–November 2016. The ASASSN-13cx system is confirmed to be a SU UMa variable. Parameters of the system are derived from eight light curves using a “composite” model that takes into account the presence of a hot spot on the lateral surface of the geometrically thick disk and of a region of enhanced energy release near the disk edge, at the base of the gas flow (the so-called “hot line”). Parameters of the system for three light curves during the outburst were obtained in the framework of a “spiral” model that additionally takes into account the presence of geometric perturbations on the accretion-disk surface. The parameters of ASASSN-13cx determined using these models provide good accuracy in reproducing the system’s light curves in both states. The basic parameters of the system have been determined for the first time: the component mass ratio q = M1/M2 = 7.0 ± 0.2, the orbital inclination i = 79.9°?80.1°, the distance between the components’ centers of mass a0 = 0.821(1) R?, and the sizes and temperatures of the stars: R1 = 0.0124(5)a0 = 0.0102(4) R?, T1 = 12 500 ± 280 K, 〈R2〉 = 0.236(4)a0 = 0.194(3) R?, T2 = 2550 ± 400 K, corresponding to M4–9V for the spectral type of the secondary. Parameters of the accretion disk have been derived for both activity states. The mass of matter in the accretion disk increased by almost a factor of two during ~400 orbital periods in quiescence.  相似文献   

19.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

20.
Phytoremediation has been applied for treating an extensive range of environmental contaminants such as anti-diabetic drug metformin which is increasingly found as environmental contaminant. These contaminants are released to the environment via human and veterinary medicine and pharmaceutical industries. In this study, native plant capabilities for uptake of metformin from wastewater were investigated. Moreover, uptake rate of metformin was studied in two different concentrations of 20 and 50 mg l?1 metformin solution by Amaranthus retroflexus, Ricinus communis, Brassica napus, Celosia cristata, Helianthus annuus and Phragmites australis. The results showed that after exposing to 20 mg l?1 metformin solution 69.53 ± 2.25% of metformin was remediated by H. annuus plants. Also in 50 mg l?1 metformin solution, H. annuus plants showed the most remediation potential (65.7 ± 1%). Metformin uptake is raised by B. napus and C. cristata plants along with increasing metformin concentration. There was no evidence of the presence of metformin in the roots and shoots of R. communis and C. cristata. The results also indicated that plants such as H. annuus can be a potential candidate for uptake of metformin from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号