共查询到18条相似文献,搜索用时 85 毫秒
1.
极化合成孔径雷达干涉测量(polarimetric interferometric synthetic aperture radar,PolInSAR)技术是提取植被高度的有效手段,应用其进行植被高度反演已经有20多年的历史。旨在通过分析近年来国内外基于PolInSAR技术的植被高度反演研究的现状,以全面、深入了解当前国际研究动态。 相似文献
2.
利用合成孔径雷达(SAR)遥感数据可以有效地估测平均树高、生物量、蓄积量等森林生物学参数。但是遥感数据精度易受SAR系统不确定性因素的影响,造成森林参数反演精度降低甚至异常。遥感系统的全链路模拟可以将遥感过程的各类影响因素解耦,获取大量具有指定参数特征的遥感数据,有利于对不确定性因素单独或联合分析。建立了SAR三维森林场景全链路模拟模型,基于E-SAR样地参数及数据验证了模型的有效性,并以森林高度反演这一典型的林业应用为对象,定量分析了运动补偿残余相位误差这一典型的SAR系统不确定性因素对反演精度的影响程度,得到了残余相位误差与高度反演RMSE测量结果之间的关系曲线。 相似文献
3.
针对传统三阶段方法难以适用于P波段极化干涉合成孔径雷达(PolInSAR)植被高反演难题,该文采用先验信息对消光系数进行固定,在此基础之上,对经典三阶段算法中地体散射幅度比为0的假设进行参数化。通过模拟实验验证新方法相比已有方法在不同地体幅度比条件下均能得到较好的反演精度,且固定消光系数不会引起树高显著偏差。最后,利用2景E-SAR P波段全极化数据进行树高度反演。实验结果表明,新方法反演树高的均方根误差(RMSE)为3.43m,相比已有方法,RMSE提高的幅度为35.7%,有效提升了传统三阶段算法的适用范围。 相似文献
4.
随机地体散射(random volume over ground,RVoG)模型广泛应用于极化干涉合成孔径雷达(polari-metric synthetic aperture radar interferometry,PolInSAR)森林高度反演当中.该模型假设森林是随机均匀同质体,模型中消光系数为恒定值,未充分考... 相似文献
5.
P波段极化干涉SAR森林高度反演研究 总被引:1,自引:0,他引:1
森林高度信息是森林研究必不可少的内容之一,对全球碳循环、森林资源管理以及获取精确的林下地形等具有重要意义。极化干涉SAR技术(PolInSAR)是目前提取森林高度的一种热门的方法,其中,P波段极化干涉SAR由于电磁波的强穿透力使其相比其他波段具有一些独有的特征。文中首先分析P波段极化干涉SAR森林高度反演的优势与不足,然后结合目前主流的森林高度反演算法,提出一种适用于P波段极化干涉SAR高度反演的新方法。该方法通过对非线性迭代算法的初始值进行有效约束,从而解算出相对可靠的消光系数,同时考虑地体幅度比对森林高度的影响,最终得到相对准确的森林高度。最后,将该方法与现有的经典算法及优化算法进行对比,通过对实验结果定性和定量分析,得出在P波段条件下该方法相比三阶段算法精度提高67.5%,相比固定消光系数法精度提高29.8%,验证了该方法的可靠性和优越性。 相似文献
6.
以美国航空航天局(National Aeronautics and Space Administration,NASA)、欧洲航天局(European Space Agency,ESA)、加蓬航天局合作的AfriSAR项目中的Lopenp和Mondah为实验区,以L波段的多基线全极化无人驾驶飞行器合成孔径雷达(unmanned aerial vehicle synthetic aperture radar,UAVSAR)数据为数据源,分别采用高度偏差(height variance,VAR)方法、偏心率(eccentricity,ECC)方法和平均相干幅度与分离度乘积(product of average coherence magnitude and separation,PROD)方法、原点到拟合直线距离与分离度乘积(product of fitted line distance from origin and coherence separation,LINE)方法进行基线选择,并基于地面随机体散射模型(random volume on ground,RVoG)三阶段方法反演森林... 相似文献
7.
针对星载重轨InSAR森林高度反演受时间去相干制约与模型解算辅助数据难以获取的问题.考虑ALOS-2 PALSAR-2干涉数据特点,采用一种顾及时间去相干影响的半经验散射模型,利用最新发布的星载激光雷达ICESat-2 ATL08高程产品中的植被高度数据作为辅助数据,并结合主成分分析思想(PCA)对ALOS-2 PALSAR-2相干幅度信息与树高的关联模型进行参数解算.实验结果表明,在ICESat-2树高数据辅助条件下,通过散射模型可以较好抑制时间去相干的影响,进而反演出可靠的模型参数及森林高度(RMSE约为3 m).本研究验证了联合星载重轨干涉SAR与星载LiDAR数据实现大范围、大尺度森林高度反演的可行性. 相似文献
8.
9.
10.
11.
综合多特征的极化SAR图像随机森林分类算法 总被引:1,自引:1,他引:1
为抑制相干斑噪声对极化SAR图像分类结果的干扰,本文提出一种综合多特征的极化SAR图像随机森林分类方法。该方法首先利用简单线性迭代聚类(SLIC)算法生成超像素作为分类单元;然后,基于高维极化特征图像,利用训练好的随机森林模型,统计决策树的分类投票数,计算各超像素的类别概率;最后,利用超像素间的空间邻域特征,采用概率松弛算法(PLR)迭代修正超像素的类别后验概率,并依据最大后验概率(MAP)准则得到分类结果;实现综合利用超像素和空间邻域特征,降低相干斑噪声干扰的极化SAR图像分类方法。实验对比结果表明:本文方法能得有效抑制极化SAR图像中相干斑噪声的干扰,得到高精度且光滑连续的分类结果。 相似文献
12.
针对利用传统监测手段难以高效获取地下水储量观测数据的问题,基于GRACE重力卫星的大尺度水资源储量反演已成为当前水资源调查的研究热点。本文利用2012-2016年CSR机构发布的GRACE RL06月解数据,通过等效水高反演得到河南省陆地水储量时序结果,扣除由同期GLDAS水文模型计算得到的地表水储量时序数据,从而得到河南省地下水储量时序变化数据结果。经与地下水位监测井实测数据进行对比验证,相关系数显著性水平达0.01,表明本文算法流程具有较高的可靠性。进一步的统计分析结果表明,河南省北部地区的地下水储量呈亏损态势,最大变化率超过26 mm/a;河南省中部和东部地区地下水储量有一定盈余,最大变化率超过16 mm/a,相关结果数据与河南省水利局公布的全省主要地下水超采区范围吻合。本文旨在利用GRACE重力卫星数据与GLDAS水文模型反演获取河南省地下水储量空间分布差异及演变趋势,相关算法流程可为广域地下水储量调查监测提供技术支撑;研究数据可为该区域地下水资源的合理利用与保护提供参考。 相似文献
13.
中国南方森林冠顶高度Lidar反演—以江西省为例 总被引:1,自引:0,他引:1
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好(R2=0.7325);阔叶林次之(R2=0.6095);混交林较差(R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。 相似文献
14.
Forest canopy height is an important indicator of forest carbon storage, productivity, and biodiversity. The present study showed the first attempt to develop a machine-learning workflow to map the spatial pattern of the forest canopy height in a mountainous region in the northeast China by coupling the recently available canopy height (Hcanopy) footprint product from ICESat-2 with the Sentinel-1 and Sentinel-2 satellite data. The ICESat-2 Hcanopy was initially validated by the high-resolution canopy height from airborne LiDAR data at different spatial scales. Performance comparisons were conducted between two machine-learning models – deep learning (DL) model and random forest (RF) model, and between the Sentinel and Landsat-8 satellites. Results showed that the ICESat-2 Hcanopy showed the highest correlation with the airborne LiDAR canopy height at a spatial scale of 250 m with a Pearson’s correlation coefficient (R) of 0.82 and a mean bias of -1.46 m, providing important evidence on the reliability of the ICESat-2 vegetation height product from the case in China’s forest. Both DL and RF models obtained satisfactory accuracy on the upscaling of ICESat-2 Hcanopy assisted by Sentinel satellite co-variables with an R-value between the observed and predicted Hcanopy equalling 0.78 and 0.68, respectively. Compared to Sentinel satellites, Landsat-8 showed relatively weaker performance in Hcanopy prediction, suggesting that the addition of the backscattering coefficients from Sentinel-1 and the red-edge related variables from Sentinel-2 could positively contribute to the prediction of forest canopy height. To our knowledge, few studies have demonstrated large-scale vegetation height mapping in a resolution ≤ 250 m based on the newly available satellites (ICESat-2, Sentinel-1 and Sentinel-2) and DL regression model, particularly in the forest areas in China. Thus, the present work provided a timely and important supplementary to the applications of these new earth observation tools. 相似文献
15.
Yanqiu Xing Alfred de Gier Junjie Zhang Lihai Wang 《International Journal of Applied Earth Observation and Geoinformation》2010
Light Detection And Ranging (LiDAR) has a unique capability for estimating forest canopy height, which has a direct relationship with, and can provide better understanding of the aboveground forest carbon storage. The full waveform data of the large-footprint LiDAR Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat), combined with field measurements of forest canopy height, were employed to achieve improved estimates of forest canopy height over sloping terrain in the Changbai mountains region, China. With analyzing ground-truth experiments, the study proposed an improved model over Lefsky's model to predict maximum canopy height using the logarithmic transformation of waveform extent and elevation change as independent variables. While Lefsky's model explained 8–89% of maximum canopy height variation in the study area, the improved model explained 56–92% of variation within the 0–30° terrain slope category. The results reveal that the improved model can reduce the mixed effects caused by both sloping terrain and rough land surface, and make a significant improvement for accurately estimating maximum canopy height over sloping terrain. 相似文献
16.
17.
Spaceborne light detection and ranging (LiDAR) enables us to obtain information about vertical forest structure directly, and it has often been used to measure forest canopy height or above-ground biomass. However, little attention has been given to comparisons of the accuracy of the different estimation methods of canopy height or to the evaluation of the error factors in canopy height estimation. In this study, we tested three methods of estimating canopy height using the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), and evaluated several factors that affected accuracy. Our study areas were Tomakomai and Kushiro, two forested areas on Hokkaido in Japan. The accuracy of the canopy height estimates was verified by ground-based measurements. We also conducted a multivariate analysis using quantification theory type I (multiple-regression analysis of qualitative data) and identified the observation conditions that had a large influence on estimation accuracy. The method using the digital elevation model was the most accurate, with a root-mean-square error (RMSE) of 3.2 m. However, GLAS data with a low signal-to-noise ratio (⩽10.0) and that taken from September to October 2009 had to be excluded from the analysis because the estimation accuracy of canopy height was remarkably low. After these data were excluded, the multivariate analysis showed that surface slope had the greatest effect on estimation accuracy, and the accuracy dropped the most in steeply sloped areas. We developed a second model with two equations to estimate canopy height depending on the surface slope, which improved estimation accuracy (RMSE = 2.8 m). These results should prove useful and provide practical suggestions for estimating forest canopy height using spaceborne LiDAR. 相似文献
18.
The mangrove forests of northeast Hainan Island are the most species diverse forests in China and consist of the Dongzhai National Nature Reserve and the Qinglan Provincial Nature Reserve. The former reserve is the first Chinese national nature reserve for mangroves and the latter has the most abundant mangrove species in China. However, to date the aboveground ground biomass (AGB) of this mangrove region has not been quantified due to the high species diversity and the difficulty of extensive field sampling in mangrove habitat. Although three-dimensional point clouds can capture the forest vertical structure, their application to large areas is hindered by the logistics, costs and data volumes involved. To fill the gap and address this issue, this study proposed a novel upscaling method for mangrove AGB estimation using field plots, UAV-LiDAR strip data and Sentinel-2 imagery (named G∼LiDAR∼S2 model) based on a point-line-polygon framework. In this model, the partial-coverage UAV-LiDAR data were used as a linear bridge to link ground measurements to the wall-to-wall coverage Sentinel-2 data. The results showed that northeast Hainan Island has a total mangrove AGB of 312,806.29 Mg with a mean AGB of 119.26 Mg ha−1. The results also indicated that at the regional scale, the proposed UAV-LiDAR linear bridge method (i.e., G∼LiDAR∼S2 model) performed better than the traditional approach, which directly relates field plots to Sentinel-2 data (named the G∼S2 model) (R2 = 0.62 > 0.52, RMSE = 50.36 Mg ha−1<56.63 Mg ha−1). Through a trend extrapolation method, this study inferred that the G∼LiDAR∼S2 model could decrease the number of field samples required by approximately 37% in comparison with those required by the G∼S2 model in the study area. Regarding the UAV-LiDAR sampling intensity, compared with the original number of LiDAR plots, 20% of original linear bridges could produce an acceptable accuracy (R2 = 0.62, RMSE = 51.03 Mg ha−1). Consequently, this study presents the first investigation of AGB for the mangrove forests on northeast Hainan Island in China and verifies the feasibility of using this mangrove AGB upscaling method for diverse mangrove forests. 相似文献