首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Stiffness variations in carbonates may be described as resulting from different concentrations of flat compliant pores or cracks, which can have a significant effect on the effective stiffness and acoustic properties (e.g., velocities and attenuations) of dry as well as saturated carbonates, although they carry extremely little porosity. As shown in this paper, the effects of dual porosity and wave-induced fluid flow or pore pressure communication may also play a significant role. On the basis of a previously published T-matrix approach to model the effective viscoelastic properties of cracked porous media, we illustrate the (frequency-dependent) effects of wave-induced fluid flow (mainly squirt flow) or pore pressure communication for a model structure consisting of a mixture of fluid-saturated porous grains and fluid-saturated cavities (vugs, etc.) that are embedded in a solid matrix associated with carbonates. We assume that the pores within the porous grains are decoupled from the pores in the solid matrix (and possibly saturated with different fluids) but that each pore system at the micro and/or mesoscale may or may not be connected. For each of four different connectivity models, we present numerical results for four different cases of microstructure (that emphasize the importance of cracks and flat compliant pores). Our numerical results indicate that the velocity and attenuation spectra of carbonates vary significantly, even when the crack density and all other volume concentrations are constant.  相似文献   

2.
An equivalent medium model for wave simulation in fractured porous rocks   总被引:3,自引:0,他引:3  
Seismic wave propagation in reservoir rocks is often strongly affected by fractures and micropores. Elastic properties of fractured reservoirs are studied using a fractured porous rock model, in which fractures are considered to be embedded in a homogeneous porous background. The paper presents an equivalent media model for fractured porous rocks. Fractures are described in a stress‐strain relationship in terms of fracture‐induced anisotropy. The equations of poroelasticity are used to describe the background porous matrix and the contents of the fractures are inserted into a matrix. Based on the fractured equivalent‐medium theory and Biot's equations of poroelasticity, two sets of porosity are considered in a constitutive equation. The porous matrix permeability and fracture permeability are analysed by using the continuum media seepage theory in equations of motion. We then design a fractured porous equivalent medium and derive the modified effective constants for low‐frequency elastic constants due to the presence of fractures. The expressions of elastic constants are concise and are directly related to the properties of the main porous matrix, the inserted fractures and the pore fluid. The phase velocity and attenuation of the fractured porous equivalent media are investigated based on this model. Numerical simulations are performed. We show that the fractures and pores strongly influence wave propagation, induce anisotropy and cause poroelastic behaviour in the wavefields. We observe that the presence of fractures gives rise to changes in phase velocity and attenuation, especially for the slow P‐wave in the direction parallel to the fracture plane.  相似文献   

3.
An approach to determining the effective elastic moduli of rocks with double porosity is presented. The double‐porosity medium is considered to be a heterogeneous material composed of a homogeneous matrix with primary pores and inclusions that represent secondary pores. Fluid flows in the primary‐pore system and between primary and secondary pores are neglected because of the low permeability of the primary porosity. The prediction of the effective elastic moduli consists of two steps. Firstly, we calculate the effective elastic properties of the matrix with the primary small‐scale pores (matrix homogenization). The porous matrix is then treated as a homogeneous isotropic host in which the large‐scale secondary pores are embedded. To calculate the effective elastic moduli at each step, we use the differential effective medium (DEM) approach. The constituents of this composite medium – primary pores and secondary pores – are approximated by ellipsoidal or spheroidal inclusions with corresponding aspect ratios. We have applied this technique in order to compute the effective elastic properties for a model with randomly orientated inclusions (an isotropic medium) and aligned inclusions (a transversely isotropic medium). Using the special tensor basis, the solution of the one‐particle problem with transversely isotropic host was obtained in explicit form. The direct application of the DEM method for fluid‐saturated pores does not account for fluid displacement in pore systems, and corresponds to a model with isolated pores or the high‐frequency range of acoustic waves. For the interconnected secondary pores, we have calculated the elastic moduli for the dry inclusions and then applied Gassmann's tensor relationships. The simulation of the effective elastic characteristic demonstrated that the fluid flow between the connected secondary pores has a significant influence only in porous rocks containing cracks (flattened ellipsoids). For pore shapes that are close to spherical, the relative difference between the elastic velocities determined by the DEM method and by the DEM method with Gassmann's corrections does not exceed 2%. Examples of the calculation of elastic moduli for water‐saturated dolomite with both isolated and interconnected secondary pores are presented. The simulations were verified by comparison with published experimental data.  相似文献   

4.
The shales of the Qiongzhusi Formation and Wufeng–Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann’s equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.  相似文献   

5.
We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.  相似文献   

6.
致密砂岩普遍具有低孔、低渗及微裂缝发育的地质特征,并且呈现出很强的非均匀性.致密砂岩储层与常规砂岩储层比较,具有明显的岩石物理性质、渗流力学性质方面的差异.致密砂岩内部的非均匀性对弹性波频散、衰减有显著影响,其中包括孔隙结构的非均匀性,即岩石内部孔隙参数的不均一性,以及孔隙内部不相混溶流体的非均匀分布;此外,非均匀性的尺度也决定了波出现显著频散与衰减的频段.综合考虑致密砂岩孔隙结构非均匀性及流体斑块状饱和的非均匀性,本文采用双双重孔隙介质结构模拟了致密砂岩的弹性波响应,分析了同时具备两类非均质性岩石中的波传播特征.调查分析了两组分别来自中国鄂尔多斯盆地苏里格气田及四川盆地广安气田的不同类型致密砂岩储层的岩芯超声波实验数据,给出了岩石样本的弹性波速度频散与衰减曲线.结果显示理论模型预测结果与完全饱和、部分饱和岩石的实验数据吻合良好.对两个地区致密砂岩岩芯数据进行对比分析,苏里格致密砂岩样本总体上比广安致密砂岩渗透率高,在各孔隙度范围内,特征模拟显示苏里格样本的裂隙尺寸明显大于广安样本.广安致密砂岩在低孔隙度范围内发育了更多、更小的颗粒裂隙/接触.致密砂岩的速度频散与衰减结果受流体黏度、晶体破裂及流体斑块状饱和的共同影响.此外,孔隙度越大,部分饱和岩石中斑块状饱和机制对总衰减的贡献越低,与之相对,结构非均质性所占的比重则有所增强.  相似文献   

7.
This paper discusses and addresses two questions in carbonate reservoir characterization: how to characterize pore‐type distribution quantitatively from well observations and seismic data based on geologic understanding of the reservoir and what geological implications stand behind the pore‐type distribution in carbonate reservoirs. To answer these questions, three geophysical pore types (reference pores, stiff pores and cracks) are defined to represent the average elastic effective properties of complex pore structures. The variability of elastic properties in carbonates can be quantified using a rock physics scheme associated with different volume fractions of geophysical pore types. We also explore the likely geological processes in carbonates based on the proposed rock physics template. The pore‐type inversion result from well log data fits well with the pore geometry revealed by a FMI log and core information. Furthermore, the S‐wave prediction based on the pore‐type inversion result also shows better agreement than the Greensberg‐Castagna relationship, suggesting the potential of this rock physics scheme to characterize the porosity heterogeneity in carbonate reservoirs. We also apply an inversion technique to quantitatively map the geophysical pore‐type distribution from a 2D seismic data set in a carbonate reservoir offshore Brazil. The spatial distributions of the geophysical pore type contain clues about the geological history that overprinted these rocks. Therefore, we analyse how the likely geological processes redistribute pore space of the reservoir rock from the initial depositional porosity and in turn how they impact the reservoir quality.  相似文献   

8.
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.  相似文献   

9.
复杂孔隙储层往往同时发育孔缝洞等多种孔隙类型,这种孔隙结构的复杂性使得岩石的速度与孔隙度之间的相关性很差.经典的二维岩石物理模版只研究弹性参数与孔隙度和饱和度之间的定量关系,而不考虑孔隙结构的影响,用这样的模版来预测复杂孔隙储层的物性参数时带来很大偏差.本文首先证明多重孔隙岩石的干骨架弹性参数可以用一个等效孔隙纵横比的单重孔隙岩石物理模型来模拟;进而基于等效介质岩石物理理论和Gassmann方程,建立一个全新的三维岩石物理模版,用它来建立复杂孔隙岩石的弹性性质与孔隙扁度及孔隙度和饱和度之间的定量关系;在此基础上,预测复杂储层的孔隙扁度、孔隙度以及孔隙中所包含的流体饱和度.实际测井和地震反演数据试验表明,三维岩石物理模版可有效提高复杂孔隙储层参数的预测精度.  相似文献   

10.
孔隙纵横比是描述多孔岩石微观孔隙结构特征的重要参数,目前用于获取岩石完整孔隙纵横比分布的经典模型为David-Zimmerman(D-Z)孔隙结构模型,该模型假设岩石由固体矿物基质、一组纵横比相等的硬孔隙以及多组纵横比不等的微裂隙构成,并认为固体矿物基质和硬孔隙均不受压力影响,在此基础上,利用超声纵横波速度的压力依赖性...  相似文献   

11.
Wyllie's time-average equation and subsequent refinements have been used for over 20 years to estimate the porosity of reservoir rocks from compressional (P)-wave velocity (or its reciprocal, transit time) recorded on a sonic log. This model, while simple, needs to be more convincingly explained in theory and improved in practice, particularly by making use of shear (S)-wave velocity. One of the most important, although often ignored, factors affecting elastic velocities in a rock is pore structure, which is also a controlling factor for transport properties of a rock. Now that S-wave information can be obtained from the sonic log, it may be used with P-waves to provide a better understanding of pore structure. A new acoustic velocities-to-porosity transform based on an elastic velocity model developed by Kuster and Toksöz is proposed. Employing an approximation to an equivalent pore aspect ratio spectrum, pore structure for reservoir rocks is taken into account, in addition to total pore volume. Equidimensional pores are approximated by spheres and rounded spheroids, while grain boundary pores and flat pores are approximated by low aspect ratio cracks. An equivalent pore aspect ratio spectrum is characterized by a power function which is determined by compressional-and shear-wave velocities, as well as by matrix and inclusion properties. As a result of this more sophisticated elastic model of porous rocks and a stricter theory of elastic wave propagation, the new method leads to a more satisfactory interpretation and fuller use of seismic and sonic log data. Calculations using the new transform on data for sedimentary rocks, obtained from published literature and laboratory measurements, are presented and compared at atmospheric pressure with those estimated from the time-average equation. Results demonstrate that, to compensate for additional complexity, the new method provides more detailed information on pore volume and pore structure of reservoir rocks. Examples are presented using a realistic self-consistent averaging scheme to consider interactions between pores, and the possibility of extending the method to complex lithologies and shaly rocks is discussed.  相似文献   

12.
None of the standard porosity-velocity models (e.g. the time-average equation, Raymer's equations) is satisfactory for interpreting well-logging data over a broad depth range. Clays in the section are the usual source of the difficulty through the bias and scatter that they introduce into the relationship between porosity and P-wave transit time. Because clays are composed of fine sheet-like particles, they normally form pores with much smaller aspect ratios than those associated with sand grains. This difference in pore geometry provides the key to obtaining more consistent resistivity and sonic log interpretations. A velocity model for Clay–sand mixtures has been developed in terms of the Kuster and Toksöz, effective medium and Gassmann theories. In this model, the total pore space is assumed to consist of two parts: (1) pores associated with sand grains and (2) pores associated with clays (including bound water). The essential feature of the model is the assumption that the geometry of pores associated with sand grains is significantly different from that associated with clays. Because of this, porosity in shales affects elastic compliance differently from porosity in sand-Stones. The predictive power of the model is demonstrated by the agreement between its predictions and laboratory measurements and by its ability to predict sonic logs from other logs over large depth intervals where formations vary from unconsolidated to consolidated sandstones and shales.  相似文献   

13.
The effective medium theory based on the Hertz–Mindlin contact law is the most popular theory to relate dynamic elastic moduli (or elastic velocities) and confining pressure in dry granular media. However, many experimental results proved that the effective medium theory predicts pressure trends lower than experimental ones and over-predicts the shear modulus. To mitigate these mispredictions, several evolutions of the effective medium theory have been presented in the literature. Among these, the model named modified grain contact theory is an empirical approach in which three parametric curves are included in the effective medium theory model. Fitting the parameters of these curves permits to adjust the pressure trends of the Poisson ratio and the bulk modulus. In this paper, we present two variations of the modified grain contact theory model. First, we propose a minor modification in the fitting function for the porosity dependence of the calibration parameters that accounts for non-linearity in the vicinity of the critical porosity. Second, we propose a major modification that reduces the three-step modified grain contact theory model to a two-step model, by skipping the calibration parameter–porosity fit in the model and directly modelling the calibration parameter–pressure relation. In addition to an increased simplicity (the fitting parameters are reduced from 10 to 6), avoiding the porosity fit permits us to apply the model to laboratory data that are not provided with accurate porosity measurements. For this second model, we also estimate the uncertainty of the fitting parameters and the elastic velocities. We tested this model on dry core measurements from literature and we verified that it returns elastic velocity trends as good as the original modified grain contact theory model with a reduced number of fitting parameters. Possible developments of the new model to add predictive power are also discussed.  相似文献   

14.
砂岩孔隙度和含泥量与波速关系的模型   总被引:4,自引:1,他引:3  
砂岩孔隙度和含泥量是影响波速的两个重要因素。研究它们之间关系具有重要意义,本文利用含有裂隙的有效弹性模量关系和泥与骨架的组合理论,建立一个模型,用来描述波速和孔隙度及泥质含量的关系,所得关系与实验结果基本吻合。  相似文献   

15.
Fu  Li-Yun  Fu  Bo-Ye  Sun  Weijia  Han  Tongcheng  Liu  Jianlin 《中国科学:地球科学(英文版)》2020,63(9):1309-1329
Poro-acoustoelastic theory has made a great progress in both theoretical and experimental aspects, but with no publications on the joint research from theoretical analyses, experimental measurements, and numerical validations. Several key issues challenge the joint research with comparisons of experimental and numerical results, such as digital imaging of heterogeneous poroelastic properties, estimation of acoustoelastic constants, numerical dispersion at high frequencies and strong heterogeneities, elastic nonlinearity due to compliant pores, and contamination by boundary reflections. Conventional poroacoustoelastic theory, valid for the linear elastic deformation of rock grains and stiff pores, is modified by incorporating a dualporosity model to account for elastic nonlinearity due to compliant pores subject to high-magnitude loading stresses. A modified finite-element method is employed to simulate the subtle effect of microstructures on wave propagation in prestressed digital cores. We measure the heterogeneity of samples by extracting the autocorrelation length of digital cores for a rough estimation of scattering intensity. We conductexperimental measurements with a fluid-saturated sandstone sample under a constant confining pressure of 65 MPa and increasing pore pressures from 5 to 60 MPa. Numerical simulations for ultrasound propagation in the prestressed fluid-saturated digital core of the sample are followed based on the proposed poro-acoustoelastic model with compliant pores. The results demonstrate a general agreement between experimental and numerical waveforms for different stresses, validating the performance of the presented modeling scheme. The excellent agreement between experimental and numerical coda quality factors demonstrates the applicability for the numerical investigation of the stress-associated scattering attenuation in prestressed porous rocks.  相似文献   

16.
Carbonate reservoirs have complex pore structures, which not only significantly affect the elastic properties and seismic responses of the reservoirs but also affect the accuracy of the prediction of the physical parameters. The existing rockphysics inversion methods are mainly designed for clastic rocks, and the inversion objects are generally porosity and water saturation. The data used are primarily based on the elastic parameters, and the inversion methods are mainly linear approximations. To date, there has been a lack of a simultaneous pore structure and physical parameter inversion method for carbonate reservoirs. To solve these problems, a new Bayesian nonlinear simultaneous inversion method based on elastic impedance is proposed. This method integrates the differential effective medium model of multiple-porosity rocks, Gassmann equation,Amplitude Versus Offset(AVO) theory, Bayesian theory, and a nonlinear inversion algorithm to achieve the simultaneous quantitative prediction of the pore structure and physical parameters of complex porous reservoirs. The forward modeling indicates that the contribution of the pore structure, i.e., the pore aspect ratio, to the AVO response and elastic impedance is second only to that of porosity and is far greater than that of water saturation. The application to real data shows that the new inversion method for determining the pore structure and physical parameters directly from pre-stack data can accurately predict a reservoir's porosity and water saturation and can evaluate the pore structure of the effective reservoir.  相似文献   

17.
We design a velocity–porosity model for sand-shale environments with the emphasis on its application to petrophysical interpretation of compressional and shear velocities. In order to achieve this objective, we extend the velocity–porosity model proposed by Krief et al., to account for the effect of clay content in sandstones, using the published laboratory experiments on rocks and well log data in a wide range of porosities and clay contents. The model of Krief et al. works well for clean compacted rocks. It assumes that compressional and shear velocities in a porous fluid-saturated rock obey Gassmann formulae with the Biot compliance coefficient. In order to use this model for clay-rich rocks, we assume that the bulk and shear moduli of the grain material, and the dependence of the compliance on porosity, are functions of the clay content. Statistical analysis of published laboratory data shows that the moduli of the matrix grain material are best defined by low Hashin–Shtrikman bounds. The parameters of the model include the bulk and shear moduli of the sand and clay mineral components as well as coefficients which define the dependence of the bulk and shear compliance on porosity and clay content. The constants of the model are determined by a multivariate non-linear regression fit for P- and S-velocities as functions of porosity and clay content using the data acquired in the area of interest. In order to demonstrate the potential application of the proposed model to petrophysical interpretation, we design an inversion procedure, which allows us to estimate porosity, saturation and/or clay content from compressional and shear velocities. Testing of the model on laboratory data and a set of well logs from Carnarvon Basin, Australia, shows good agreement between predictions and measurements. This simple velocity-porosity-clay semi-empirical model could be used for more reliable petrophysical interpretation of compressional and shear velocities obtained from well logs or surface seismic data.  相似文献   

18.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   

19.
高孔隙岩石变形的离散单元模型   总被引:5,自引:0,他引:5       下载免费PDF全文
实验和野外观测表明颗粒破碎显著影响高孔隙岩石的变形特征.为建立高孔隙岩石变形的数值模型,我们以弹性理论为基础并根据问题的特征进行合理简化,给出了一种颗粒破碎机制,并根据此颗粒破碎条件改进传统的离散单元模型.利用改进的离散单元模型,研究了不同压力条件下高孔隙岩石变形的宏观和微观特征.数值模拟结果表明考虑颗粒破碎的模型能重现高孔隙岩石在不同围压下变形的应力-应变关系、声发射特征、应变局部化和剪切增强压缩等特征.我们还发现,与野外观测结果一致,在高孔隙岩石脆性阶段剪切带内部及附近伴有显著的颗粒破碎.  相似文献   

20.
The acoustic signature of fluid flow in complex porous media   总被引:2,自引:0,他引:2  
Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic–viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown–Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown–Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz–clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号