首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Onshore and offshore oil spills contaminate soil. In addition to environmental concerns for ground water pollution and other possible effects, the geotechnical properties of the contaminated soil such as the shear strength and the hydraulic conductivity are also altered. This note is a report of research in progress to evaluate the variation of the shear strength of a sand contaminated by a crude oil and thus the ultimate bearing capacity of shallow foundations. The limited results of the tests reported here relate to only one type of sand and one crude oil. The oil content was varied from zero to 4.2%. Results of direct shear tests for determining the soil friction angle are given. Along with these, laboratory model test results for the ultimate bearing capacity of a surface strip foundation supported by crude oil-contaminated sand are also presented. Based on these test results, the effect of oil contamination in drastically reducing the bearing capacity is discussed.  相似文献   

2.
通过隔时复压等试验表明,静压桩的极限承载力随时间呈双曲线增大.静压桩时效性机理主要是触变恢复效应和固结效应.引入时间参数分析在粘土中沉桩时所引起的超静孔隙水压力,给出了考虑固结效应的超静孔隙水压力的解.考虑不确定性和模糊性的特点,根据静压桩的压桩力,推算桩的极限承载力,并给出了一种计算方法.  相似文献   

3.
挤扩支盘桩极限承载力的预测   总被引:2,自引:0,他引:2  
用双曲线方法对110根挤扩支盘桩的极限承载力进行预测,并与直杆桩预测结果进行对比。结果表明由于支盘桩受力性状复杂,加载前期和中期预测精度较高,后期较低,误差超过15%;支盘桩的沉降曲线出现台阶时预测值与实测值误差较大;支盘桩极限承载力的预测精度与工程地质条件和桩本身的参数密切相关,桩身参数和地质条件相同条件下各桩预测精度比较接近。总体上直杆桩的预测结果优于支盘桩。  相似文献   

4.
简述了岩土工程中确定桩基极限承载力的一般方法,讨论了影响桩基极限承载力的主要因素,在此基础上,运用随机-模糊方法确定桩基极限承载力并给出算例。初步研究表明,该方法确定桩基极限承载力比一般的统计方法要客观和全面。  相似文献   

5.
Extensive laboratory model tests have been carried out on a strip footing resting over dry sand bed subjected to eccentrically inclined load to determine the ultimate bearing capacity (Patra et al. in Int J Geotech Eng 6(3):343–352, 2012a.  https://doi.org/10.3328/IJGE.2012.06.03.343-352, Int J Geotech Eng 6(4):507–514, b.  https://doi.org/10.3328/IJGE.2012.06.04.507-514). Similarly, lower bound calculations based on finite element method were performed to compute the bearing capacity of a strip footing subjected to an eccentric and inclined load lying over a cohesionless soil with varying embedment depth and relative density (Krabbenhoft et al. in Int J Geomech ASCE, 2014.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000332). The load may be applied in two ways namely, towards the center line and away from the center line of the footing. Based on the results (both experimental and numerical analyses), a neural network model is developed to predict the reduction factor that will be used in computing the ultimate bearing capacity of an eccentrically inclined loaded strip footing. This reduction factor (RF) is the ratio of the ultimate bearing capacity of the footing subjected to an eccentrically inclined load to the ultimate bearing capacity of the footing subjected to a centric vertical load. A thorough sensitivity analysis is carried out to evaluate the parameters affecting the reduction factor. Based on the weights of the developed neural network model, a neural interpretation diagram is developed to find out whether the input parameters have direct or inverse effect on the output. A prediction model equation is framed with the trained weights of the neural network as the model parameters. The predictions from ANN, and those from other approaches, are compared with the results computed from both experimentation and FEM analyses. The ANN model results are found to be more accurate and well matched with other results.  相似文献   

6.
双曲线法预测单桩极限承载力的讨论   总被引:8,自引:2,他引:8  
刘俊龙 《岩土工程技术》2001,(4):204-207,216
利用49根试桩完整资料的数据,采用双曲线模型进行拟合、预测单桩极限承载力并与实测成果进行对比分析,探讨了沉降控制法及折减系数法预测单桩极限承载力的适用范围、预测精度等问题.  相似文献   

7.
鲁晓兵  矫滨田  刘亮 《岩土工程技术》2006,20(4):170-172,199
桶形基础是近年开发的一种新型的可广泛应用于海洋工程结构的基础形式。由于多种优越性而受到各国石油部门的重视,并引起许多研究人员的关注。通过在饱和砂中的单桶和四桶基础模型实验,研究了桶形基础的静承载特性。分别进行了垂直方向和水平方向的加载实验,其中,四桶基础水平方向加载又分为沿四桶中心构成的正方形的平行边方向和对角线方向施加,得到了载荷位移曲线,对单桶和四桶基础承载力特性,以及加载方向和速率的影响进行了分析和比较。  相似文献   

8.
饱和土地基在既有房屋长期荷载作用下,地基土强度参数值随着地基土的排水固结和压密而提高,地基极限承载力也同时增大,如何估算此提高值而挖掘其潜力,传统方法只是借助于统计回归讨论了设计承载力。本文从土力学基本原理出发,借助Prandtl假定,对既有房屋饱和土地基极限承载力的增长进行了探讨。  相似文献   

9.
沈阳地区砂土碎石土层抗拔桩承载力的试验研究   总被引:3,自引:0,他引:3  
通过沈阳砂土地区旋挖成孔抗拔桩的现场静载试验、钢筋应力测试等试验,研究单桩抗拔承载能力、侧摩阻力的分布规律,得出以下结论:按地层年代划分土层确定侧摩阻力比按岩性名称划分更为合理;压浆前、后增强段侧阻力增强系数约在1.15~1.62之间;扩径支盘现象可以使局部摩阻力发挥较大,但也限制了其下部一定桩长范围内摩阻力的发挥.  相似文献   

10.
In this paper, an effort is made to evaluate the seismic bearing capacity of shallow strip footing resting on c–ф soil. The formulation is developed to get a single coefficient of bearing capacity for simultaneous resistance of weight, surcharge and cohesion. Limit equilibrium method in Pseudo-static approach with Coulomb mechanism is applied here to evaluate the seismic bearing capacity. The seismic bearing capacity of footing (quE) is expressed in terms of single coefficient NγE. The effect of various parameters viz. angle of internal friction of soil (ф), angle of wall friction (δ), cohesion (c), ratio of depth to width of footing (df/B0), seismic acceleration (kh, kv) are studied on the variation of seismic bearing capacity co-efficients.  相似文献   

11.
随着城市开发的速度越来越快,土地也日益变得珍贵,高层建筑得到了快速发展,为了满足高层建筑物越来越大的结构荷载的需要,桩长和桩直径也变得越来越大。在不大幅增加成本的前提下,后注浆技术提高了钻孔灌注桩的单桩承载力,并降低了建筑物的沉降,因此得到了更广泛的应用。简要介绍了后注浆工艺的承载力提高机理及几个工程实例,分析了注浆前后单桩极限承载力变化情况及部分影响因素,为普及应用积累了一些素材。  相似文献   

12.
樟木位于喜马拉雅山中段,是中国与尼泊尔的重要通商口岸,也是中尼公路的咽喉。特殊的地质地形条件和丰富的降水为地质灾害的发生提供了充分条件,区域内滑坡地质灾害发育。大量房屋建筑修建于樟木滑坡堆积体之上,滑坡灾害严重威胁到当地人民群众的生命财产安全和口岸经济的发展。目前,大量有关樟木滑坡堆积体稳定性的评价只考虑了暴雨条件和通过强度折减简化的地震作用,而忽略了地震的动态作用过程和人类活动的影响。为了精确论证该堆积体在动力载荷作用下的稳定程度,笔者在野外调查的基础上,计算了地震和车辆震动等极端工况下的动态安全系数,并按照地形条件、地质特征及已有滑坡分布状况,分区块评价其极限承载力。结果表明,堆积体古滑坡基本稳定,但前缘和后缘区块的承载力偏低;现代滑坡稳定性较差,没有进一步的承载空间,应禁止增加表观荷载。结论为系统治理樟木滑坡灾害,优化樟木建设用地布局和确保口岸的可持续发展提供了科学支撑。  相似文献   

13.
The paper focuses on the behaviour of a model strip footing, resting on a saturated dense sandy soil, subjected to centred or eccentric vertical loading. Experimental tests, carried out on a small-scale physical model, are able to reproduce effective stress levels equivalent to those prevailing in prototype problems, thanks to the maintenance of a downward steady-state seepage in the soil. The test program consists of three series of tests, each corresponding to an imposed value of hydraulic gradient, and each involving five load eccentricities; one series, in particular, is carried out with still water. Relevant points of load–settlement curves are related to the evolution of soil-footing collapse mechanism, evidenced by the distortion of some vertical coloured sand strips. The collapse mechanism is formed either by one or two sliding surfaces, depending on both load eccentricities and hydraulic gradient values. Significant differences are shown to occur between centred and eccentric loading footing response. Shear strength parameters obtained from back-analyses carried out on load values recorded at the appearance of each sliding surface on the free soil surface, in both hypotheses of associated and non-associated flow rule validity, are adopted to draw, for each test, a theoretical collapse mechanism consisting, in plane strain, of a log-spiral line with adjacent-end tangents; the obtained theoretical sliding surfaces, in turn, are compared to the experimental ones, showing that these latter are either stress characteristic or zero-extension lines depending mainly on cumulative footing displacements and current effective stress level in the soil.  相似文献   

14.
王贵虎  周红  胡璞 《岩土工程技术》2003,(5):265-267,275
为了减小人工冻结法带来的负面影响和扩展其应用范围 ,通过模型试验研究了冻融土地基极限承载力的变化规律。为合理地进行冻融土地基承载力设计和改善冻融土承载力提供了科学依据  相似文献   

15.
Geotechnical and Geological Engineering - Based on the test results of the bolt axial strain in three types of high, medium, and low strength respectively, the shear stresses of the internal...  相似文献   

16.
In this paper, a modeling procedure is carried out to numerically analyze the end bearing capacity of drilled shafts in sand. The Mohr–Coulomb elastic plastic constitutive law with stress dependent elastic parameters is used for all numerical analyses performed in this study. The numerical results are compared with the available experimental equations. It is seen that numerical results are in good agreement with experimental equations. The variation of the end bearing capacity of drilled shafts versus embedment depth is also studied. Numerical results show that with increase in pile embedment depth, the end bearing capacity increases. However, the rate of increase becomes smaller as the pile embedment depth increases. Also, numerical analyses show that, for equal settlement, the end bearing decreases with increase in the pile diameter. Finally, a sensitivity analysis is performed to obtain the separate effect of each sand parameter on the end bearing capacity of drilled shafts, and the parameters that are most influential are identified.  相似文献   

17.
考虑侧填荷载的分离式基础涵洞地基承载力新算法和试验   总被引:1,自引:0,他引:1  
为了研究涵侧填土对采用分离式基础涵洞地基承载力的提高效应,先结合基底土体的受力特点,进行受力分析,建立计算模型,构建求解分离式基础地基极限承载力的算法,给出承载力表达式。然后在相似理论的指导下,设计了5组模型,试验模拟粉质黏土地基受荷变形直到破坏的全过程,绘出荷载-沉降曲线,测得涵侧填土高度为0、4、8、12、16 m时的地基极限承载力。试验发现:随着侧填土高度的增加,承载力显著提高,当填土为12 m时已达到885 kPa;但提高幅度表现出非线性特性,先从18.42%增加到36.11%,然后减小到3.39%;当填土达到16 m时承载力达到915 kPa且不再增加;同时发现使用本文算法与试验实测值的误差小于10%,可以考虑用此算法计算分离式基础涵洞的地基极限承载力。继而得出结论:当涵洞地基沉降满足设计要求时,涵侧填土显著提高了地基承载力,节约工程造价,且提高的幅度先增加后减少,当达到16 m时地基承载力便逐渐趋于915 kPa。  相似文献   

18.
The paper presents the results of laboratory model tests and theoretical analysis on the behavior of a strip footing supported on sheet pile wall-stabilized sandy slope and loaded vertically to failure. The parameters varied in the study include the height, stiffness and location of the sheet pile wall, the location of the footing relative to the slope crest and the relative density of sand. Two-dimensional plane strain finite element analyses was used to analyze a prototype strip footing on sandy slope with same conditions. The results indicate that the inclusion of sheet pile wall has significant effect in improving the response of the strip footing and the slope itself. The theoretical results confirm the experimental results of the model footing tests and show reasonable agreement. Based on the numerical and experimental results, critical values of the sheet pile wall parameters for maximum stabilizing effect are established.  相似文献   

19.
This study explores the potential of adaptive neuro-fuzzy inference systems (ANFIS) for prediction of the ultimate axial load bearing capacity of piles (Pu) using cone penetration test (CPT) data. In this regard, a reliable previously published database composed of 108 datasets was selected to develop ANFIS models. The collected database contains information regarding pile geometry, material, installation, full-scale static pile load test and CPT results for each sample. Reviewing the literature, several common and uncommon variables have been considered for direct or indirect estimation of Pu based on static pile load test, cone penetration test data or other in situ or laboratory testing methods. In present study, the pile shaft and tip area, the average cone tip resistance along the embedded length of the pile, the average cone tip resistance over influence zone and the average sleeve friction along the embedded length of the pile which are obtained from CPT data are considered as independent input variables where the output variable is Pu for the ANFIS model development. Besides, a notable criticism about ANFIS as a prediction tool is that it does not provide practical prediction equations. To tackle this issue, the obtained optimal ANFIS model is represented as a tractable equation which can be used via spread sheet software or hand calculations to provide precise predictions of Pu with the calculated correlation coefficient of 0.96 between predicted and experimental values for all of the data in this study. Considering several criteria, it is represented that the proposed model is able to estimate the output with a high degree of accuracy as compared to those results obtained by some direct CPT-based methods in the literature. Furthermore, in order to assess the capability of the proposed model from geotechnical engineering viewpoints, sensitivity and parametric analyses are done.  相似文献   

20.
In this paper an analytical method has been proposed to predict the net ultimate uplift capacity of the single bent pile and pile group with a bent embedded in sand considering arching effects. Arching develops due to relative compressibility of sand relative to pile which activates the soil-pile friction. The method takes into consideration the embedded length (L), diameter of the pile (d), bent angle, surface characteristics of pile, group configuration, spacing of the pile group and the soil properties. Log spiral failure surface with parabolic arch shape was assumed in the analysis. Theoretical investigation for uplift capacity was been carried out for the single bent pile and group of pile (2 × 1, 2 × 2) embedded in sand. The variable used in the analysis were embedded length to pile diameter (L/d = 15, 20 and 25), spacing in the group (3d, 4d and 6d) and angle of bent (6°, 14° and 20°). Typical charts for evaluation of net ultimate uplift capacity for pile groups are presented through the figures. Comparison of theoretical results shows good agreement with established experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号