首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A large new database of major, trace elements and Sr-Nd isotopic ratios from 11 lava-field provinces in New South Wales and Queensland, eastern Australia allows detailed interpretation of the origin of these basaltic magmas. Isotopic signatures and trace element patterns identify an OIB-type (oceanic island basalt) source as a dominant component for most of these and some provinces appear to have additional significant components derived from the subcontinental lithospheric mantle (SCLM). The SCLM components have geochemical characteristics that overlap those observed in spinel lherzolite xenoliths (samples of shallow lithospheric mantle) from eastern Australia. These SCLM components show geochemical provinciality that indicates the occurrence of distinct geochemical lithospheric domains reflecting the timing and style of tectonic evolution of different regions. One component reflects modification by subduction-related processes during the late Paleozoic and Mesozoic, one records enrichment by fluids during old metasomatic events and another suggests a metasomatic event involving a distinctive amphibole and apatite-style enrichment. The composition and age distribution of volcanic lava-field provinces older than 10 Ma are consistent with a model involving a regional upwelling (elongated N–S along eastern Australia) of deep hot mantle related to marginal rifting and with OIB-type source geochemical characteristics. Thermal inhomogeneities within this plume swath resulted in small diapirs which may have undergone melt segregation at about 100 km and incorporated varying amounts of SCLM components there or from higher levels of the SCLM during ascent. Subsequent hot-spot generated central volcanoes overprinted this lava-field volcanism, tapped a similar OIB-type source component and truncated the thermal events. Accepted: 15 March 1995  相似文献   

2.
Geochemical data are presented for primitive alkaline rocks from the Kutch region, north–northwest of Deccan Volcanic Province (DVP) of west central India, which is generally regarded as related to the Reunion Plume. The trace element systematics of these rocks are similar to those of ocean-island basalts, but there is considerable compositional variation, which is related to a strong overprint from the lithosphere on plume-derived magmas. This subcontinental lithospheric mantle (SCLM) component has geochemical characteristics that overlap those observed in spinel lherzolite xenoliths entrained in these rocks. Phlogopite and apatite in the SCLM are of metasomatic origin attributed to the infiltrating fluids and/or melts derived from rising mantle plume material. The composition of the alkaline rocks is consistent with a regional upwelling of deep mantle related to marginal rifting and with OIB-type geochemical characteristics. Thermal inhomogeneities within such plume swath resulted in small diapirs, which may have undergone melt segregation at the base of the lithosphere (100 km) and incorporated varying amounts of SCLM during ascent.  相似文献   

3.
《International Geology Review》2012,54(15):1865-1884
It is generally accepted that Neoproterozoic extension and dispersal of the supercontinent Rodinia was associated with mantle plume or superplume activities. However, plume-generated contemporaneous continental flood basalts (CFBs) have rarely been identified. In this study, we present geochronological and geochemical evidence for the basalts from the Liufangzui Formation of the Huashan Group in the Dahongshan region of east-central China. A representative sample yields a SHRIMP U–Pb zircon age of 824 ± 9 Ma, interpreted as the crystallization age of the rocks. Geochemically, these basalts belong to the subalkaline tholeiite series and display slight enrichments in light rare earth elements (LREE) and varying degrees of deficiency of high field strength elements (HFSE) such as Nb, Ta, and Ti. This pattern is very similar to that of CFBs from the Bikou Group and Tiechuanshan Formation in the northwestern Yangtze block in China and Siberia in Russia. The basaltic magmas underwent partially-fractional crystallization during ascent, but were not intensely influenced by crustal contamination. The characteristic element ratios and negative Hf isotopic analyses (?Hf(t) = ?6.6–2.6) in zircons indicate that the parental magmas of the basalts might have been derived from an enriched lithospheric mantle rather than from the depleted mantle such as normal mid-ocean ridge basalts (N-MORBs). The geochemical signatures and regional geological characteristics show that these basalts were formed along intraplate continental rifts rather than in island arcs or ocean basins. Considering the coeval basic volcanic rocks in South China, we propose that these Huashan Group basalts represent the remnants of plume-generated CFBs and have close spatiotemporal ties with a coeval basic igneous province in Australia. Our results support the Neoproterozoic location of the South China block adjacent to southeastern Australia in the reconstruction model of the supercontinent Rodinia.  相似文献   

4.
《地学前缘(英文版)》2018,9(6):1809-1827
This study reports major, trace, rare earth and platinum group element compositions of lava flows from the Vempalle Formation of Cuddapah Basin through an integrated petrological and geochemical approach to address mantle conditions, magma generation processes and tectonic regimes involved in their formation. Six flows have been identified on the basis of morphological features and systematic three-tier arrangement of vesicular-entablature-colonnade zones. Petrographically, the studied flows are porphyritic basalts with plagioclase and clinopyroxene representing dominant phenocrystal phases.Major and trace element characteristics reflect moderate magmatic differentiation and fractional crystallization of tholeiitic magmas. Chondrite-normalized REE patterns corroborate pronounced LREE/HREE fractionation with LREE enrichment over MREE and HREE. Primitive mantle normalized trace element abundances are marked by LILE-LREE enrichment with relative HFSE depletion collectively conforming to intraplate magmatism with contributions from sub-continental lithospheric mantle(SCLM) and extensive melt-crust interaction. PGE compositions of Vempalle lavas attest to early sulphur-saturated nature of magmas with pronounced sulphide fractionation, while PPGE enrichment over IPGE and higher Pd/Ir ratios accord to the role of a metasomatized lithospheric mantle in the genesis of the lava flows. HFSEREE-PGE systematics invoke heterogeneous mantle sources comprising depleted asthenospheric MORB type components combined with plume type melts. HFSE-REE variations account for polybaric melting at variable depths ranging from garnet to spinel lherzolite compositional domains of mantle. Intraplate tectonic setting for the Vempalle flows with P-MORB affinity is further substantiated by(i) their origin from a rising mantle plume trapping depleted asthenospheric MORB mantle during ascent,(ii) interaction between plume-derived melts and SCLM,(iii) their rift-controlled intrabasinal emplacement through Archeane Proterozoic cratonic blocks in a subduction-unrelated ocean-continent transition zone(OCTZ). The present study is significant in light of the evolution of Cuddapah basin in the global tectonic framework in terms of its association with Antarctica, plume incubation, lithospheric melting and thinning, asthenospheric infiltration collectively affecting the rifted margin of eastern Dharwar Craton and serving as precursors to supercontinent disintegration.  相似文献   

5.
Early Cambrian and Mid-Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks,which had aggregated to form part of the Rodinia supercontinent by ca.900 Ma.On the basis of petrogeochemical data,the basic lavas can be classified into two major magma types:HT(Ti/Y>500) and LT(Ti/Y<500) that can be further divided into HT1 (Nb/La>0.85) and HT2(Nb/La≤0.85),and LT1(Nb/La>0.85) and LT2(Nb/La≤0.85) subtypes, respectively.The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere-(or plume-) derived magmas,whereas the parental magmas of the HT1 and LT1 lavas did not undergo,during their ascent,pronounced lithospheric contamination.These volcanics exhibit at least three characteristics:(1) most have a compositional bimodality;(2) they were formed in an intracontinental rift setting;and(3) they are genetically linked with mantle plumes or a mantle surperplume.This rift-related volcanism at end of the MidNeoproterozoic and Early Cambrian coincided temporally with the separation between AustraliaEast Antarctica,South China and Laurentia and between Australia and Tarim,respectively. The Mid—Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.  相似文献   

6.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma.  相似文献   

7.
对信阳地区商丹断裂带南侧龟山岩组新元古代变质玄武岩进行了岩石学、地球化学及Sr-Nd同位素研究,分析结果显示该套玄武岩为亚碱性拉斑玄武系列,分为低Ti及高Ti两种类型:低Ti型较富Mg,不相容元素富集程度及稀土分馏程度较低,具有E-MORB的微量元素地球化学特征,Sr-Nd同位素组成相对富集,可能来自地幔柱引发的岩石圈地幔的部分熔融,并受到一定程度的地壳混染;高Ti型较富Fe,强烈富集不相容元素,具有OIB的地球化学特征,Sr-Nd同位素组成较为亏损,可能来自地幔柱的部分熔融,并较少受到地壳物质的影响。综合构造判别显示该套玄武岩可能为地幔柱伸展背景下的岩浆活动产物,可能为区域上沿商丹断裂带分布的中—新元古代局部伸展背景岩浆活动产物的组成部分。  相似文献   

8.
More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17–27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the earlier Permo-Carboniferous rifting episode which affected the entire study area and clearly was accompanied by plume activity (Ernst and Buchan in American Geophysical Union, pp 297–337, 1997). Renewed rifting in Jurassic times triggered decompression melting in the volatile-enriched lithospheric mantle and the alkaline melts generated inherited the earlier stored plume signature.This revised version was published online September 2004 with a correction to the footnote of the sample list.  相似文献   

9.
Basalts exposed in the Platta and Tasna nappes (SE Switzerland) derive from the Alpine‐Tethys ocean–continent transitions (OCT) and overlie subcontinental lithospheric mantle (SCLM). We show that the trace element signatures of these basalts differ from mid‐ocean ridge basalts (MORB). Two types of basalts occur in the OCT: a type‐1 showing a ‘garnet signature’ that can be modelled by the partial melting of the SCLM in the spinel stability field and a type‐2 characterized by an enrichment in incompatible elements that can be explained by the mixing between garnet‐pyroxenite‐derived melts and the melting of either a depleted MORB mantle or a refertilized SCLM. Based on the geological and geochemical observations, we propose that the basalts from the Alpine‐Tethys OCTs result from a poly‐phase magmatic system that carries an inherited SCLM signature. These basalts should therefore be referred to as OCT‐basalts rather than as MOR‐basalts.  相似文献   

10.
Early–Middle Jurassic igneous rocks (190–170 Ma) are distributed in an E–W-trending band within the Nanling Tectonic Belt, and have a wide range of compositions but are only present in limited volumes. This scenario contrasts with the uniform but voluminous Middle–Late Jurassic igneous rocks (165–150 Ma) in this area. The Early–Middle Jurassic rocks include oceanic-island basalt (OIB)-type alkali basalts, tholeiitic basalts and gabbros, bimodal volcanic rocks, syenites, A-type granites, and high-K calc–alkaline granodiorites. Geochemical and isotopic data indicate that alkaline and tholeiitic basalts and syenites were derived from melting of the asthenospheric mantle, with asthenosphere-derived magmas mixing with variable amounts of magmas derived from melting of metasomatized lithospheric mantle. In comparison, A-type granites in the study area were probably generated by shallow dehydration-related melting of hornblende-bearing continental crustal rocks that were heated by contemporaneous intrusion of mantle-derived basaltic magmas, and high-K calc-alkaline granodiorites resulted from the interaction between melts from upwelling asthenospheric mantle and the lower crust. The Early–Middle Jurassic magmatic event is spatially variable in terms of lithology, geochemistry, and isotopic systematics. This indicates that the deep mantle sources of the magmas that formed these igneous rocks were significantly heterogeneous, and magmatism had a gradual decrease in the involvement of the asthenospheric mantle from west to east. These variations in composition and sourcing of magmas, in addition to the spatial distribution and the thermal structure of the crust–mantle boundary during this magmatic event, indicates that these igneous rocks formed during a period of rifting after the Indosinian Orogeny rather than during subduction of the paleo-Pacific oceanic crust.  相似文献   

11.
The nature of the source of continental flood basalts (CFB) is a highly debated topic. Proposed mantle sources for CFBs, including both high- and low-Ti basalts, include subcontinental lithospheric mantle (SCLM), asthenospheric mantle, and deep, plume-related mantle. Re-Os isotope systematics can offer important constraints on the sources of both ocean island basalts (OIB) and CFB, and may be applied to distinguish different possible melt sources. This paper reports the first Re-Os isotope data for the Late Permian Emeishan large igneous province (LIP) in Southwest China. Twenty one CFB samples including both low- and high-Ti basalts from five representative sites within the Emeishan LIP have been analyzed for Os, Nd, and Pb isotopic compositions. The obtained Os data demonstrate that crustal assimilation affected Os isotopic compositions of some Emeishan basalt samples with low Os concentrations but not all of the samples, and the Emeishan basalts with high Os contents likely experienced the least crustal contamination. The low and high-Ti basalts yield distinct Os signatures in terms of 187Os/188Os and Os content. The low-Ti basalt with the highest Os concentration (400 ppt) has a radiogenic Os isotopic composition (γOs(t), +6.5), similar to that of plume-derived OIB. Because the Os isotopic composition of basalts with relatively high Os concentrations (typically >50 ppt) likely represents that of their mantle source, this result implies a plume-derived origin for the low-Ti basalts. On the other hand, the high-Ti basalts with high Os concentration (over 50 ppt) have unradiogenic Os isotopic signatures (γOs(t) values range from −0.8 to −1.4), suggesting that a subcontinental lithosphere mantle (SCLM) component most likely contributed to the generation of these magmas. Combining Pb and Nd isotopic tracers with the Os data, we demonstrate that the low-Ti basaltic magmas in the Emeishan CFB were mainly sourced from a mantle plume reservoir, whereas the high-Ti basaltic magmas were most likely derived from a SCLM reservoir or were contaminated by a significant amount of lithospheric mantle material during plume-related magma ascent through the SCLM.  相似文献   

12.
亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究   总被引:1,自引:0,他引:1  
峨眉山(~260 Ma)、西伯利亚(~250 Ma)和德干(~66 Ma)大陆溢流玄武岩是世界上3个重要的大火成岩省.大火成岩省至少具有4个通常被用于识别古地幔柱的标志:(1)先于岩浆作用的地表隆升;(2)与大陆裂谷化和裂解事件相伴;(3)与生物灭绝事件联系密切;(4)地幔柱源玄武岩的化学特征.虽然这3个大火成岩省都是来源于原始地幔柱,但是它们的地球化学特征有本质上的差异,反映其地幔柱曾与不同的上地幔库相互作用.(1)峨眉山和西伯利亚大陆溢流玄武岩的母岩浆,在上升过程中经受了与地球化学上和古老克拉通岩石圈地幔相同的上地幔库(EM1型幔源)的相互作用;(2)而德干大火成岩省没有受到地壳(或岩石圈)混染的原生玄武岩则显示地幔柱和EM2之间的Sr-Nd同位素变化.这种差异有可能制约了3个大火成岩省的成矿潜力.峨眉山和西伯利亚大火成岩省含有世界级岩浆矿床,而德干大火成岩省则不含矿.  相似文献   

13.
<正>Neoproterozoic rifting-related mafic igneous rocks are widely distributed both in the northern and southern margins of the Tarim Block,NW China.Here we report the geochronology and systematic whole-rock geochemistry of the Neoproterozoic mafic dykes and basalts along the southern margin of Tarim.Our zircon U-Pb age,in combination with stratigraphic constraint on their emplacement ages,indicates that the mafic dykes were crystallized at ca.802 Ma,and the basalt, possibly coeval with the ca.740 Ma volcanic rocks in Quruqtagh in the northern margin of Tarim. Elemental and Nd isotope geochemistry of the mafic dykes and basalts suggest that their primitive magma was derived from asthenospheric mantle(OIB-like) and lithospheric mantle respectively,with variable assimilation of crustal materials.Integrating the data supplied in the present study and that reported previously in the northern margin of Tarim,we recognize two types of mantle sources of the Neoproterozoic mafic igneous rocks in Tarim,namely the matasomatized subcontinental lithospheric mantle(SCLM) in the northern margin and the long-term enriched lithospheric mantle and asthenospheric mantle in the southern margin.A comprehensive synthesis of the Neoproterozoic igneous rocks throughout the Tarim Block led to the recognition of two major episodes of Neoproterozoic igneous activities at ca.820-800 Ma and ca.780-740 Ma,respectively.These two episodes of igneous activities were concurrent with those in many other Rodinian continents and were most likely related to mantle plume activities during the break-up of the Rodinia.  相似文献   

14.
The ∼133 Ma volcanic rocks of Sangxiu Formation are distributed in the eastern part of the central Tethyan Himalaya and belong paleogeographically to the northeastern margin of Greater India. These volcanic rocks include alkaline basalts and felsic volcanic rocks. Major and trace element abundances and whole-rock isotopic data for selected samples of these volcanic rocks are used to infer their petrogenesis. Geochemically, the Sangxiu basalts are closely similar to the Emeishan high-Ti basalts. Major and trace element data and Sr–Nd isotopic compositions suggest that the Sangxiu basalts may have been derived from an OIB-type mantle source, with discernable contributions from subcontinental lithospheric mantle (SCLM). The basaltic magmas may have formed as a result of the infiltration of plume-derived melts into the base of the lithosphere in a continental rift setting. The Sangxiu felsic volcanic rocks share most of the geochemical features of A-type granite, and have Sr–Nd isotopic compositions which differ considerably from the Sangxiu basalts, suggesting that they originated from the anatexis of ensialic continental crust. The Sangxiu volcanic rocks may be considered as the consequence of an interaction between the Kerguelen hotspot and the lithosphere of the northeastern margin of Greater India at ∼133 Ma, and may represent the initial stage of the separation of Greater India from southwestern Australia.  相似文献   

15.
During the late Mesozoic, an unusually broad range of alkalic magma compositions was erupted along the southern border of the São Francisco craton of Brazil. This magmatic activity includes carbonatite, kimberlite, lamprophyre, lamproite, syenite and the largest known example of extrusive kamafugite, the Mata da Corda formation. To determine the nature of the sources of this magmatism, and their geochemical history, an Os isotope study along with major and trace element and Sr, Nd and Pb isotope analyses of kimberlitic, lamproitic and kamafugitic rocks from the Alto Paranaíba province of Brazil was undertaken. This complements recent geochemical and isotopic studies of these magmas. The Os isotope data for Alto Paranaíba samples point to a peridotitic lithospheric mantle source for the kimberlites and lamproites that was variably depleted in Re, presumably by melt removal at some time between the late Archean and mid-Proterozoic. These lithospheric peridotites experienced LIL-element enrichment by fluid/melt metasomatism at roughly 1 Ga, most likely during mobile belt formation along the western border of the São Francisco craton. Kamafugitic samples have very radiogenic Os, suggestive of mafic (e.g. pyroxenite, websterite, eclogite) source materials that again appear to have been stabilized in the lithospheric mantle of Brazil in the mid to late Proterozoic. The Os isotope evidence for lithospheric sources for the Alto Paranaíba activity, coupled with Sr, Nd and Pb isotopic characteristics that overlap those of the Walvis Ridge hot-spot trace indicate that the EM1 component in South Atlantic ocean island basalts most likely represents the influence of delaminated Brazilian lithospheric mantle mixed into mantle circulation beneath the South Atlantic and is not related to the plume(s) commonly associated with this ocean island magmatism.  相似文献   

16.
The Lower Cretaceous Jacupiranga complex, in the central-southeastern portion of the South American Platform, includes carbonatites in close association with silicate rocks (i.e. strongly and mildly silica-undersaturated series). Here we document the first hafnium isotope data on the Jacupiranga complex, together with new trace element and Pb isotope compositions. Even though liquid immiscibility from a carbonated silicate melt has been proposed for the genesis of several Brazilian carbonatites, isotopic and geochemical (e.g., Ba/La ratios, lack of pronounced Zr-Hf and Nb-Ta decoupling) information argues against a petrogenetic relationship between Jacupiranga carbonatites and their associated silicate rocks. Thus, an origin by direct partial melting of the mantle is considered. The isotopic compositions of the investigated silicate samples are coherent with a heterogeneously enriched subcontinental lithospheric mantle (SCLM) source of rather complex evolution. At least two metasomatic processes are constrained: (1) a first enrichment event, presumably derived from slab-related fluids introduced into the SCLM during Neoproterozoic times, as indicated by consistently old TDM ages and lamprophyre trace signatures, and (2) a Mesozoic carbonatite metasomatism episode of sub-lithospheric origin, as suggested by εNd-εHf values inside the width of the terrestrial array. The Jacupiranga parental magmas might thus derive by partial melting of distinct generations of metasomatic vein assemblages that were hybridized with garnet peridotite wall-rocks.  相似文献   

17.
Approximately 1650-Ma-old NW/SE and NE/SW-trending dolerite dykes in the Tiruvannamalai (TNM) area and approximately 1800-Ma-old NW/SE-trending dolerite dykes in the Dharmapuri (DP) area constitute major Proterozoic dyke swarms in the high-grade granulite region of Tamil nadu, southern India. The NW- and NE-trending TNM dykes are compositionally very similar and can be regarded as having been formed during a single magmatic episode. The DP dykes may relate to an earlier similar magmatic episode. The dolerites are Fe-rich tholeiites and most of the elemental variations can be explained in terms of fractional crystallisation. Clinopyroxene and olivine are the inferred ferromagnesian fractionation phases followed by plagioclase during the late fractionation stages. All the studied dykes have, similar to many continental flood basalts (CFB), large-ion lithophile element (LILE) and light rare-earth element (LREE) enrichment and Nb and Ta depletion. The incompatible element abundance patterns are comparable to the patterns of many other Proterozoic dykes in India and Antarctica, to the late Archaean (~2.72 Ga) Dominion volcanics in South Africa and to the early Proterozoic (~2.0 Ga) Scourie dykes of Scotland. The geochemical characteristics of the TNM and DP dykes cannot be explained by crustal contamination alone. Instead, they are consistent with derivation from an enriched lithospheric mantle source which appears to have been developed much earlier than the dyke intrusions during a major crustal building event in the Archaean. The dyke magmas may have been formed by dehydration melting induced by decompression and lithospheric attenuation or plume impingement at the base of the lithosphere. These magmas, compared with CFB, appear to be the minor partial melts from plume heads of smaller diameter and of shallow origin (650 km). Therefore, the Proterozoic thermal events could induce crustal attenuation and dyke intrusions in contrast to the extensive CFB volcanism and continental rifting generally associated with the Phanerozoic plumes of larger head diameter (>1000 km) and of deeper origin (at crust mantle boundary).  相似文献   

18.
中国西部探明了一系列与新元古代以来幔源岩浆有关的镍铜铂族元素(platinum group elements, PGE)岩浆矿床,华北克拉通新元古代金川镍铜铂族硫化物矿床、峨眉山二叠纪大火成岩省金宝山铂族元素矿床等记录了不同构造环境幔源岩浆PGE超常富集成矿过程。亲铁性的铂族元素高度富集于地核,深部地幔起源、高程度部分熔融形成的镁铁质岩浆中PGE含量较高,地幔岩浆系统不同条件下铂族元素以纳米态元素簇、合金、硫化物熔体或超临界流体运移-聚集成矿,在阶段性岩浆房多阶段、多途径富集,成矿作用类型丰富。华北-华南克拉通岩石圈地幔PGE含量均略高于原始地幔值;华北克拉通岩石圈地幔PGE含量从古生代到中新生代略有降低,表明存在PGE抽取岩浆事件。中国西部新元古代以来的幔源岩浆源区PGE不亏损、岩浆活动时间长、岩浆-硫化物相互作用PGE多阶段富集及地幔柱岩浆动力学背景是PGE超常富集成矿的有利地质条件,其控制因素及动力学背景的认识对查明PGE成矿潜力和拓展资源储量具有重要意义。  相似文献   

19.
通过对塔西南棋盘河乡尤勒巴斯地区玄武岩进行了LA-ICP-MS 锆石 U-Pb同位素研究。获得锆石206 Pb/238 U同位素年龄为298.3±2.8 Ma(MSWD=2.6), 代表玄武岩的结晶年龄。本次研究的玄武岩具有高的Ti、Nb: Ti/Y为513.86~577.35、Nb含量为28×10-6~35.7×10-6、La/Nb为5.06~6.25以及低的Zr/Nb比值(10~10.86), 表明该玄武岩的形成与富集岩石圈地幔有关。而相对低的Nb/U(近30)和Ce/Pb(近15)比值, 指示研究区玄武岩来自大陆岩石圈或受一定程度的地壳混染。尤勒巴斯地区玄武岩具有高TiO2和P2O5, 富集轻稀土和Rb、Ba, 指示具有地幔柱的地球化学成分特征。基于塔里木地区大规模的火山岩喷发以及富集不相容元素的地球化学特征和岩相古地理特征支持, 塔西南玄武岩可能是由地幔柱火山作用, 或由于地幔柱的供热和上升导致富集的岩石圈地幔部分熔融而形成。  相似文献   

20.
It has been suggested that large areas of the Earth's lithospheric mantle undergo pervasive dehydration melting during the impact of mantle plumes and the Early-Cretaceous Paraná-Etendeka continental flood-basalt (CFB) province has repeatedly been cited as evidence of this phenomenon. During the Cretaceous, however, southern Brazil experienced two phases of mafic magmatism. These igneous events occurred ~50?Ma apart and therefore represent distinct episodes of melt genesis in the underlying mantle. The first phase of magmatism, in the Early Cretaceous, included the emplacement of lava flows associated with the Paraná-Etendeka CFB province and also the intrusion of small-volume mafic alkaline magmas (e.g. Anitápolis, Jacupiranga and Juquiá) in the Dom Feliciano and Ribeira mobile belts. During the Late Cretaceous, both sodic and potassic mafic magmas were emplaced on the margin of the adjacent Luis-Alves craton and intrude the flood-basalts at Lages. On the basis of variations in incompatible trace-element concentrations (e.g. Ba?=?1000 to 2000?ppm), initial 87Sr/86Sr ratios (0.7048–0.7064) and ?Nd values (?3 to ?12), we suggest that all of the Late-Cretaceous mafic potassic magmas were derived from the subcontinental lithospheric mantle (SCLM) which was metasomatically enriched during the Proterozoic. We propose that these relatively low temperature, volatile-rich, mafic melts provide direct evidence that the underlying SCLM did not melt wholesale during the previous Early-Cretaceous Paraná-Etendeka CFB event. Late-Cretaceous melting of the SCLM beneath southern Brazil may have been caused by heat conduction from either: (1) ponded ~132?Ma Tristan plume-head material; or (2) ~85?Ma Trindade plume-head material channelled southwards between the thick cratonic keels of the Amazonas and São Francisco cratons. The Late-Cretaceous magmatism appears to have been contemporaneous with uplift across southern Brazil and Paraguay; we suggest that both of these phenomena represent the widespread effects of the impact of the Trindade mantle plume on the base of the SCLM. Plate margin stresses and lithospheric extension associated with the opening of the South Atlantic may also have changed the geothermal gradient beneath southern Brazil and contributed to mantle melting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号