首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Toba  T. Ohta 《水文研究》2008,22(14):2634-2643
To elucidate the factors involved in interception loss, we conducted experiments in which we measured environmental variables such as rainfall intensity, forest structure, and weather conditions. An artificial forest consisting of 24 vinyl trees was used to examine the influences of forest structure and rainfall conditions on interception loss. The interception rate was higher at higher plant area index (PAI) values and wind speeds and lower with greater rainfall intensity. We confirmed the factors affecting interception loss by using an interception model based on the tank model. The artificial forest simulations provide new evidence that interception loss is influenced by the PAI, rainfall intensity, saturation deficit, and wind speed. The effect of the saturation deficit on the interception rate was unclear from the experimental results, but the single‐tank model revealed that wind speed strongly influences the effects of the saturation deficit on interception loss. Thus, whereas interception loss was not significantly affected by the saturation deficit at low wind speeds, it increased significantly with the saturation deficit under windy conditions. The model simulation also showed the sensitivity of each factor with regard to the interception rate. The sensitivity of rainfall intensity decreased as the PAI increased, and the sensitivity of the saturation deficit increased as the wind speed increased. The experiments and model calculations clarified the main elements affecting interception loss and their sensitivities. Compared with previous studies on interception loss, this study revealed a positive relationship between the PAI and interception loss, a negative exponential relationship with rainfall intensity, and the effects of the saturation deficit on interception loss. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
José Návar 《水文研究》2013,27(11):1626-1633
The quantitative importance of rainfall interception loss and the performance of the reformulated Gash model were evaluated as a function of basal area in Mexico's northeastern temperate forest communities. A sensitivity analysis as well as an iterative search of parameters matched interception loss measurements and assessments and isolated coefficient values that drive the model performance. Set hypothesis was tested with a total of 73 rainfalls recorded on four forest stands with different canopy cover for model fitting (39) and validation (34). The reformulated Gash model predicted well rainfall interception loss because mean deviations between recorded and modelled interception loss as a function of gross rainfall, MD, were <2.6% and 5.3% for fitting and validating parameter data sets, respectively. Basal area was negatively related to the model performance, but maximum projected MD range values can be found in most interception loss studies, for example, <7% when basal area is <5 m2 ha?1. The wet canopy evaporation rate and the canopy storage coefficient drive interception loss and the iterative parameter search showed that high wet canopy evaporation rates were expected in these forests. These parameters must be further studied to physically explain drivers of high wet canopy evaporation rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
J. W. Finch  A. B. Riche 《水文研究》2010,24(18):2594-2600
Concern has been expressed that Miscanthus x giganteus, a dedicated biomass crop, may have a high water use, with implications for its economic yield and impacts on water resources. There is particular uncertainty about one component of the water use, the interception loss. Measurements of the interception loss were made in a plot of the crop at a site in south‐east England, during 1997/1998 and 1998/1999. The measured interception losses were 25 and 24% of gross rainfall, respectively. Winter interception losses are relatively high, which is attributed to the slow rate of leaf loss. A Monte Carlo procedure was used to optimize three of the parameters of the Gash interception model on the 1997/1998 data. The simulated values had an uncertainty of 1·1 mm per storm in 1997/1998 and 2·9 mm per storm in 1998/1999. The model was also used to investigate the potential effect of the evaporation rate being overestimated due to the measurements being made in an experimental plot. This showed that the interception losses might be reduced to 21 and 18% in field scale plantations. A consideration of the relative interception rate demonstrated that the crop behaved more like a forest, in terms of the interception losses, during the winter months. © Crown Copyright 2010. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

4.
《Journal of Hydrology》1999,214(1-4):103-110
During the growing season of 1995, canopy water fluxes were measured within a northern hardwood stand in southern Ontario, Canada. Observed canopy interception loss, throughfall, and stemflow fluxes from the stand were 19.3±3.5%, 76.4±2.9%, and 4.3±2.0% of incident precipitation, respectively. Both the original and revised Gash analytical rainfall interception loss models simulated these fluxes within the standard error of the observed estimates, suggesting that the analytical model may be appropriate for further applications within this forest type. The revised Gash model is recommended for further applications as it is better physically based. Both the original and revised models suggest that ∼60% of interception loss during the study period was evaporation from the canopy once rainfall has ceased while evaporation from the saturated canopy during rainfall accounted for ∼27%–33% of interception loss. Additional components of interception (e.g., evaporation from trunks) were computed to be minor contributors to total canopy interception loss.  相似文献   

5.
D. L. Dunkerley 《水文研究》2008,22(12):1985-1995
Interception losses from the canopies of dryland plant taxa remain poorly understood, especially the relative contributions of intra‐storm and post‐storm evaporative losses. Employing a new measuring apparatus, this study uses low‐intensity simulated rain, matched to the properties of local rain, to explore interception processes in bluebush shrubs at an Australian dryland site. Five shrub specimens were exposed to simulated rain for 60–90 min. Experiments were repeated at three rainfall intensities (10, 15, and 20 mm h?1). Canopy evaporation was found from the difference between the flux of water delivered to the shrub and the flux of throughfall, once equilibrium had been established. The results show that evaporation from the wet foliage during rain proceeds at an average rate of 3·6 mm h?1. This figure is for relatively cool spring‐season conditions; evaporation rates in hot summer conditions would be larger. Intra‐storm evaporation is shown to exceed post‐rain evaporation from interception storage on the shrubs, and this differentiates dryland shrub interception processes from those of the better‐studied wet forest environment. Implications of the high dryland shrub canopy evaporation rates for aspects of dryland ecology are highlighted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Interception is one of the most underestimated processes of the hydrological cycle. However, it amounts to a substantial part of the terrestrial evaporation and forms a direct feedback of moisture to the atmosphere which is important to sustain continental rainfall. Most investigations on interception focus on canopy interception only, whereas the interception by the surface and forest floor may be of same order of magnitude. Moreover there is a regional bias. Most research has been carried out in Europe and America and little is known about interception in Africa. This paper presents a study on forest floor and canopy interception in a savannah ecosystem. The study deals with both interception storage capacity of different vegetation types and the related moisture fluxes. The interception storage capacity of Msasa leaf litter and of Thatching grass is 1.8 mm and 1.5 mm respectively. This water storage capacity is dependent on storm intensity, with high intensity storms resulting in smaller storage capacity than less intensive storms. Canopy interception for the study period averaged 25% of the total rainfall, which is comparable with other studies. More importantly, the study revealed that combining canopy and forest floor interception yields a total interception flux amounting to 37% of the rainfall, or close to 50% of the total evaporation. This is a significant amount which implies that interception of both canopy and forest floor should be included in hydrological modelling and that interception is relevant for water management.  相似文献   

7.
Depending on season, rainfall characteristics and tree species, interception amounts to 15–50% of total precipitation in a forest under temperate climates. Many studies have investigated the importance of interception of different tree species in all kinds of different climates. Often authors merely determine interception storage capacity of that specific species and the considered event, and only sometimes a distinction is made between foliated and non‐foliated trees. However, interception is highly variable in time and space. First, since potential evaporation is higher in summer, but secondly because the storage capacity has a seasonal pattern. Besides weather characteristics, such as wind and rain intensity, snow causes large variations in the maximum storage capacity. In an experimental beech plot in Luxembourg, we found storage capacity of canopy interception to show a clear seasonal pattern varying from 0·1 mm in winter to 1·2 mm in summer. The capacity of the forest floor appears to be rather constant over time at 1·8 mm. Both have a standard deviation as high as ± 100%. However, the process is not sensitive to this variability resulting only in 11% variation of evaporation estimates. Hence, the number of raindays and the potential evaporation are stronger driving factors on interception. Furthermore, the spatial correlation of the throughfall and infiltration has been investigated with semi‐variograms and time stability plots. Within 6–7 m distance, throughfall and infiltration are correlated and the general persistence is rather weak. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Analyses of the response by a weighing lysimeter in Kioloa State Forest during and after rainfall provided values of interception loss rate. The derived rates for time scales between 0.1 and 1.0mm h?1 were generally similar throughout storm events to losses determined from throughfall and stemflow observations. During post-rainfall periods of canopy drying, enhanced rates of lysimeter evaporation were consistent with micrometeorological determinations of the partitioning of available radiant energy, based on atmospheric gradients of humidity and temperature. Interception losses from the eucalypt forest, deduced from the lysimeter response, varied between 10 and 15 per cent of gross rainfall in three consecutive 12 month periods whereas the corresponding rainfall ranged between 590 and 1530 mm yr?1. Daytime losses accounted for about two-thirds of total interception loss with a similar fraction occurring during rain periods. Storage capacity of the evergreen forest canopy was inferred to be 0.35 mm. Hourly loss rates during rainfall ranged up to 0.8 mm h?1 but with decreasing mean values and variability with increasing time scale resulting in a monthly mean value computed for the total number of hours of rain of approximately 0.1 mm h?1. A preliminary analysis of loss rate in terms of storm windspeed and rainfall intensity explained about half of its variation in statistically derived relationships. Improved time resolution of the order of seconds was considered a prerequisite to the physical understanding of turbulent transport from saturated canopies. The small value of interception storage capacity was considered in relation to that for pine forest as a basis for explaining observed differences in interception behaviour between eucalypt forest and coniferous plantations in the same area. Large differences in interception losses between the Kioloa site and evergreen forest in the South Island of New Zealand and also eucalypt forest in Western Australia were attributed to dissimilar meteorological conditions at the various sites.  相似文献   

9.
The forest canopy affects the water entering the forest ecosystem by intercepting rainfall. This is especially pertinent in forests that depend on rainfall for their ecological water needs, quantifying and simulating interception losses provide critical insights into their ecological hydrological processes. In the semi-arid areas of the Loess Plateau, afforestation has become an effective ecological restoration measure. However, the rainfall interception process of these plantations is still unclear. To quantify and model the canopy interception of these plantations, we conducted a two-year rainfall redistribution measurement experiment in three typical plantations, including a deciduous broadleaf plantation (Robinia pseudoacacia) and two evergreen coniferous plantations (Platycladus orientalis and Pinus tabuliformis). Based on this, the revised Gash model was used to simulate their interception losses, and the model applicability across varying rainfall types was further compared and verified. The experiment clarified the rainfall redistribution in the three plantations, and the proportions of throughfall to gross rainfall in Robinia pseudoacacia, Platycladus orientalis, and Pinus tabuliformis were 84.8%, 70.4%, and 75.6%; corresponding, the stemflow proportions were 2.0%, 2.2%, and 1.8%; the interception losses were 13.2%, 27.4%, and 22.6%, respectively. The dominant rainfall pattern during the experiment was characterized by low-amounts, moderate-intensity, and short-duration, during which the highest interception proportions across the three plantations were observed. We used the Penman-Monteith equation and the regression method, respectively, to estimate the canopy average evaporation rate of the revised Gash model, finding that the latter provides a closer match to the measured cumulative interception (NSE >0.7). When simulating interception under the three rainfall patterns, the model with the regression method better simulated the cumulative interception and event-scale interception for Platycladus orientalis and Pinus tabuliformis plantations under the dominant rainfall pattern. The results contribute valuable information to assess the impact of forest rainfall interception on regional hydrologic processes.  相似文献   

10.
Rainfall interception from a lowland tropical rainforest in Brunei   总被引:7,自引:0,他引:7  
Results from a programme of throughfall measurements in a lowland tropical rainforest in Brunei, northwest Borneo, indicate that interception losses amount to 18% of the gross incident rainfall. The high annual rainfall experienced by the study area results in annual interception losses of around 800 mm, which may result in total annual evapotranspiration losses significantly higher than in other rainforest locations. An improved version of Gash's analytical interception model is tested on the available data using assumed values for the “forest” parameters, and is found to predict interception losses extremely well. The model predictions are based on an estimated evaporation rate during rainfall of 0.71 mm h−1. This is significantly higher than has been reported in other tropical studies. It is concluded that these results are distinctive when compared with previous results from rainforests, and that further, detailed work is required to establish whether the enhanced evaporation rate is due to advective effects associated with the maritime setting of the study area.  相似文献   

11.
12.
Measurements are reported of rainfall, throughfall, stemflow, and derived interception losses made on a daily basis during two consecutive rainy seasons in a 4–5 year old and rapidly growing plantation forest of Acacia auriculiformis in a humid tropical environment. During the first observation period throughfall, stemflow, and interception loss amounted to respectively 81, 8, and 11 per cent of gross precipitation, whilst corresponding values for the second observation period were 75, 7, and 18 per cent. All three components correlated strongly with amounts of daily rainfall, but slopes of linear regression equations differed significantly between seasons for each component. Such differences are thought to reflect a 20 per cent increase in foliar mass as well as a certain instrumental bias introduced by the use of a fixed grid of throughfall troughs that differed between seasons. Tests did not reveal any effects of differences in rainfall characteristics although the two observation periods differed markedly in this respect. Although the present results fell within the (lower part of the) range reported for other sites in Southeast Asia application of Gash's analytical model suggested the results obtained during the second observation period to be anomalous. The model was tested with data from the second halves of the two observation periods, using parameters derived from the corresponding first halves. Discrepancies between estimated and observed losses were +9·4 and ?14·3 per cent for the two periods respectively. The bulk of the interception loss consisted of evaporation from a saturated canopy (69–80 per cent) and of evaporation after rainfall had ceased (25 and 15 per cent for the two periods respectively). Although the results were encouraging it would seem that a major difficulty in applying the analytical model to the humid tropics lies in obtaining a reliable estimate of the evaporation rate from a saturated canopy.  相似文献   

13.
Application of models for estimating rainfall partitioning in deciduous forests may be considered time consuming and laborious given the need for two different parameter sets to describe leafed and leafless periods. This paper reports how rainfall partitioning modelling was done for a downy oak forest plot (Eastern Pyrenees Mountains, NE Spain) using sparse Rutter and Gash interception loss models and their suitability for such studies. Moreover, variability in model sensitivity is evaluated, and an attempt to simplify their application is also presented. The estimation error for interception loss in the leafed period was ?26.3% and ?4.2% with the Rutter model and the Gash model applied with Penman–Monteith‐based evaporation rate, respectively. The estimate for the leafless period was less accurate in both models, suggesting that modelling in the leafless period is more susceptible to error. Nevertheless, with the Gash model, the result was well below the expected measurement error. Models proved to be highly sensitive to change in canopy cover in all periods tested. The Rutter model was especially sensitive to zero plane displacement changes in the leafed period, while the Gash model showed high linear sensitivity to evaporation rate. In addition, a decrease in rainfall rate affects the estimation of interception loss more than an increase in it. Regardless of its high sensitivity to these parameters, the Gash model yielded a good estimate of rainfall partitioning for the total period, when only one set of parameters was used, although event‐based error compensation occurred, and some periods were over or underestimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Shuguang Liu 《水文研究》2001,15(12):2341-2360
Simple but effective models are needed for the prediction of rainfall interception under a full range of environmental and management conditions. The Liu model was validated using data published in the literature and was compared with two leading models in the literature: the Rutter and the Gash models. The Liu model was tested against the Rutter model on a single‐storm basis with interception measurements observed from an old‐growth Douglas fir (Pseudotsuga menziesii) forest in Oregon, USA. Simulated results by the Liu model were close to the measurements and comparable to those predicted by the Rutter model. The Liu model was further tested against the Gash model on a multistorm basis. The Gash and Liu models successfully predicted long‐term interception losses from a broad range of 20 forests around the world. Results also indicated that both the Gash and the Liu models could be used to predict rainfall interception using daily rainfall data, although it was assumed in both models that there is only one storm per rain day. The sensitivity of the Liu model to stand storage capacity, canopy gap fraction and evaporation rate from wet canopy surface during rainfall was investigated. Results indicate that the Liu model has the simplest form, least data requirements and comparable accuracy for predicting rainfall interception as compared with the Rutter and the Gash models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Precipitation is the most fundamental input of water for terrestrial ecosystems. Most precipitation inputs are vertical, via rain, but can be horizontal, via wind‐driven rain and snow, or, in some ecosystems such as tropical montane cloud forests (TMCFs), via fog interception. Fog interception can be particularly important in ecosystems where fog is frequently present and there are seasonal periods of lower rainfall. Epiphytes in trees are a major ecological component of TMCFs and are particularly dependent on fog interception during periods of lower rainfall because they lack access to soil water. But assessing fog interception by epiphytes remains problematic because: (i) a variety of field or laboratory methods have been used, yet comparisons of interception by epiphytes versus interception by various types of fog gauge are lacking; (ii) previous studies have not accounted for potential interactions between meteorological factors. We compared fog interception by epiphytes with two kinds of commonly used fog gauges and developed relations between fog interception and meteorological variables by conducting laboratory experiments that manipulated key fog characteristics and from field measurements of fog interception by epiphytes. Fog interception measured on epiphytes was correlated with that measured from fog gauges but was more than an order of magnitude smaller than the actual measurements from fog gauges, highlighting a key measurement issue. Our laboratory measurements spanned a broad range of liquid water content (LWC) values for fog and indicate how fog interception is sensitive to an interaction between wind speed and LWC. Based on our results, considered in concert with those from other studies, we hypothesize that fog interception is constrained when LWC is low or high, and that fog interception increases with wind speed for intermediate values of LWC—a net result of deposition, impaction, and evaporation processes—until interception begins to decrease with further increases in wind speed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Analyses were made of the concurrent canopy precipitation balances of a seed orchard pine and a mature forest eucalypt during protracted rainfalls selected for their representativeness of the range of variation encountered in the two canopy types at Tallanganda State Forest (ca. 990 m a.s.l.) in the Upper Shoalhaven Valley of southeastern New South Wales. Although their canopy storage capacities were widely different there was consistent interception behaviour in the pine and the eucalypt in all events. Detailed weather data and the time courses of interception loss provided circumstantial evidence for a varying and, at times, substantial influence of cloud or mist deposition on the canopy precipitation balances during rainfall that made a significant contribution to the variation in rainfall interception data. Mean evaporation rates from the saturated canopies during rainfall varied from ?0·02 mm hr?1 up to 0·68 mm hr?1 in the pine; and from ?0·04 mm hr?1 up to 0·13 mm hr?1 in the eucalypt. The implications of cloud-capture during rainfall for studies of rainfall interception in forests of southeastern Australia are discussed.  相似文献   

17.
The aim of this study is to understand the canopy interception of Qinghai spruce forest under conditions of different precipitation characteristics and canopy structures in the upper reach of Heihe River basin, northwestern China. On the basis of a continuous record covering our investigating period by an automatic throughfall‐collecting system, we analysed the relationships between the canopy interception and the precipitation characteristics. Our results support the well‐established exponential decay relationship between the gross precipitation and the interception percentage after the canopy is saturated. But our results sufficiently illustrate a notable point that the variations in the interception percentage are almost independent from the variations in the gross precipitation before the canopy is saturated. Our examination into the relationship between the interception and the 10‐min average intensity of precipitation demonstrates a divergent relationship, and the divergent relationship is bracketed by an upper ‘dry line’ indicating that 100% of gross precipitation was intercepted before saturation and by a lower ‘wet line’ suggesting that the actual canopy storage capacity reached the maximum and evaporation was the only component of the interception. To search for the relationship between canopy structures and interception, we grouped the canopy covers over the 90 throughfall‐collecting tanks into ten categories ranging from 0 (no cover) to 0.9 (nearly completely covered), and the corresponding canopy interception was calculated by subtracting the averaged throughfall of each canopy‐cover category from the gross precipitation. The results show that the interception percentage increases faster with increasing canopy cover under intermediate rainfall conditions than that under heavy rainfall conditions. Unexpectedly, under light rainfall conditions the increasing rate of interception percentage with increasing canopy cover and also with increasing plant area index is not faster than that under the intermediate rainfall conditions simply because the tank‐measured percentage of interception was extremely high at near‐zero canopy cover conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
There is increased interest in the potential of tree planting to help mitigate flooding using nature-based solutions or natural flood management. However, many publications based upon catchment studies conclude that, as flood magnitude increases, benefit from forest cover declines and is insignificant for extreme flood events. These conclusions conflict with estimates of evaporation loss from forest plot observations of gross rainfall, through fall and stem flow. This study explores data from existing studies to assess the magnitudes of evaporation and attempts to identify the meteorological conditions under which they would be supported. This is achieved using rainfall event data collated from publications and data archives from studies undertaken in temperate environments around the world. The meteorological conditions required to drive the observed evaporation losses are explored theoretically using the Penman–Monteith equation. The results of this theoretical analysis are compared with the prevailing meteorological conditions during large and extreme rainfall events in mountainous regions of the United Kingdom to assess the likely significance of wet canopy evaporation loss. The collated dataset showed that event Ewc losses between approximately 2 and 38% of gross rainfall (1.5 to 39.4 mm day−1) have been observed during large rainfall events (up to 118 mm day−1) and that there are few data for extreme events (>150 mm day−1). Event data greater than 150 mm (reported separately) included similarly high percentage evaporation losses. Theoretical estimates of wet-canopy evaporation indicated that, to reproduce the losses towards the high end of these observations, relative humidity and the aerodynamic resistance for vapour transport needed to be lower than approximately 97.5% and 0.5 to 2 s m−1 respectively. Surface meteorological data during large and extreme rainfall events in the United Kingdom suggest that conditions favourable for high wet-canopy evaporation are not uncommon and indicate that significant evaporation losses during large and extreme events are possible but not for all events and not at all locations. Thus the disparity with the results from catchment studies remains.  相似文献   

19.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

20.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号