首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Sm‐Nd and Rb‐Sr isotopic data for Archaean gneisses from three localities within the eastern Yilgarn Block of Western Australia indicate that the gneisses define a precise Rb‐Sr whole rock isochron age of 2780 ± 60 Ma and an initial 87Sr/86Sr of 0.7007 ± 5. The Sm‐Nd isotopic data do not correspond to a single linear array, but form two coherent groups that are consistent with a c. 2800 Ma age of crust formation, with variable initial Nd. These results indicate that the gneiss protoliths existed as continental crust for a maximum period of only c. 100 Ma, and probably for a much shorter time, prior to the formation of the 2790 ±30 Ma greenstones.  相似文献   

2.
《International Geology Review》2012,54(14):1786-1800
Geochronology, geochemistry, and whole-rock Sr–Nd–Pb isotopes were studied on a suite of Mesozoic adamellites from eastern China to characterize their ages and petrogenesis. Sensitive high-resolution ion microprobe U–Pb zircon analyses were done, yielding consistent ages of 123.2 ± 1.8 to 122.1 ± 2.1 Ma for the samples. These rocks belong to the alkaline magma series in terms of K2O + Na2O contents (8.45–9.58 wt.%) and to the shoshonitic series based on their high K2O contents (5.23–5.79 wt.%). The adamellites are further characterized by high light rare earth element contents [(La/Yb)N = 14.96–45.99]; negative Eu anomalies (δEu = 0.46–0.75); positive anomalies in Rb, Th, Pb, and U; and negative anomalies in Sr, Ba, and high field-strength elements (i.e. Nb, Ta, P, and Ti). In addition, all of the adamellites in this study display relatively low radiogenic Sr [(87Sr/86Sr)i = 0.7081–0.7089] and negative ?Nd(t) values from –16.70 to –17.80. These results suggest that the adamellites were derived from low-degree partial melting of an enriched lithospheric mantle below the North China Craton (NCC). The parent magmas likely experienced fractional crystallization of potassium feldspar, plagioclase and Fe–Ti oxides (e.g. rutile, ilmenite, and titanite), apatite, and zircon during the ascent of alkaline rocks without crustal contamination.  相似文献   

3.
New zircon U–Pb ages for a felsic volcanic rock (2,588 ± 10 Ma) and an intrusive granite (≥2,555 ± 6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton, southern India, are similar to dates for equivalent rocks in the Eastern Dharwar Craton and indicates docking of the two cratons prior to this time. The zircons in the intrusive granite are strongly overprinted, and coexisting titanites yielded two different age populations: the dominant group gives an age of 2,566 ± 7 Ma, interpreted as the emplacement age, whereas the minor group gives an age of 2,516 ± 10 Ma, reflecting a hydrothermal overprint. In situ U–Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522 ± 6 Ma) and Ajjanahalli (2,520 ± 9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The new dates confirm that both the younger greenstone belts and lode gold mineralization in the Dharwar Craton are about 100–120 My, younger than in other well-dated Archaean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower-middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India.  相似文献   

4.
Hydrothermal sulfide–oxide–gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite–pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite–pyrite, hematite–pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E–W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite–carbonate–pyrite–biotite–chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between −8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite–pyrite to relatively oxidized magnetite–pyrite and hematite–pyrite both in space and time. Gold deposition is inferred to have occurred where fluids of contrasting redox state mixed.  相似文献   

5.
The Willyama Supergroup of the Broken Hill region in southern Australia consists of supracrustal sedimentary and magmatic rocks, formed between 1810 and 1600 Ma. A statistical analysis of nearly 2000 SHRIMP U–Pb zircon spot ages, compiled from published and unpublished sources, provides evidence for three distinct tectonostratigraphic successions and four magmatic events during this interval. Succession 1 includes Redan Geophysical Zone gneisses and the lower part of the Thackaringa Group (Cues Formation). These rocks were deposited after 1810 Ma and host granite sills of the first magmatic event (1710–1700 Ma). Succession 2 includes the upper Thackaringa Group (Himalaya Formation), the Broken Hill Group and the Sundown Group and was deposited between 1710 and 1660 Ma. These rocks all contain detrital zircons from the first magmatic event (1710–1700 Ma) and in some cases from the second magmatic event (1690–1680 Ma). The second magmatic event (1690–1680 Ma) was bimodal, resulted from crustal extension, and was coeval with deposition of the Broken Hill Group and deepening of the basin. With this event a mafic sill swarm focused in the Broken Hill Domain. Mafic sills lack any trace of inheritance, unlike the granitoids that commonly contain inherited zircons typical of the supracrustal sediments. Succession 3, the Paragon Group and equivalents were deposited after 1660 Ma, but before a regional metamorphic event at 1600 Ma. Metamorphism was closely followed by inversion of the succession into a fold‐and‐thrust belt, accompanied by a fourth late to post‐orogenic magmatic event (ca 1580 Ma) characterised by granite intrusion and regional acid volcanism (the local equivalents of the Gawler Range Volcanics in South Australia).  相似文献   

6.
More than 20 layered intrusions were emplaced at c. 1075 Ma across > 100 000 km2 in the Mesoproterozoic Musgrave Province of central Australia as part of the c. 1090–1040 Ma Giles Event of the Warakurna Large Igneous Province (LIP). Some of the intrusions, including Wingellina Hills, Pirntirri Mulari, The Wart, Ewarara, Kalka, Claude Hills, and Gosse Pile contain thick ultramafic segments comprising wehrlite, harzburgite, and websterite. Other intrusions, notably Hinckley Range, Michael Hills, and Murray Range, are essentially of olivine-gabbronoritic composition. Intrusions with substantial troctolitic portions comprise Morgan Range and Cavenagh Range, as well as the Bell Rock, Blackstone, and Jameson–Finlayson ranges which are tectonically dismembered blocks of an originally single intrusion, here named Mantamaru, with a strike length of > 170 km and a width of > 20 km, constituting one of the world's largest layered intrusions.Over a time span of > 200 my, the Musgrave Province was affected by near continuous high-temperature reworking under a primarily extensional regime. This began with the 1220–1150 Ma intracratonic Musgrave Orogeny, characterized by ponding of basalt at the base of the lithosphere, melting of lower crust, voluminous granite magmatism, and widespread and near-continuous, mid-crustal ultra-high-temperature (UHT) metamorphism. Direct ascent of basic magmas into the upper crust was inhibited by the ductile nature of the lower crust and the development of substantial crystal-rich magma storage chambers. In the period between c. 1150 and 1090 Ma magmatism ceased, possibly because the lower crust had become too refractory, but mid-crustal reworking was continuously recorded in the crystallization of zircon in anatectic melts. Renewed magmatism in the form of the Giles Event of the Warakurna LIP began at around 1090 Ma and was characterized by voluminous basic and felsic volcanic and intrusive rocks grouped into the Warakurna Supersuite. Of particular interest in the context of the present study are the Giles layered intrusions which were emplaced into localized extensional zones. Rifting, emplacement of the layered intrusions, and significant uplift all occurred between 1078 and 1075 Ma, but mantle-derived magmatism lasted for > 50 m.y., with no time progressive geographical trend, suggesting that magmatism was unrelated to a deep mantle plume, but instead controlled by plate architecture.The Giles layered intrusions and their immediate host rocks are considered to be prospective for (i) platinum-group element (PGE) reefs in the ultramafic–mafic transition zones of the intrusions, and in magnetite layers of their upper portions, (ii) Cu–Ni sulfide deposits hosted within magma feeder conduits of late basaltic pulses, (iii) vanadium in the lowermost magnetite layers of the most fractionated intrusions, (iv) apatite in unexposed magnetite layers towards the evolved top of some layered intrusions, (v) ilmenite as granular disseminated grains within the upper portions of the intrusions, (vi) iron in tectonically thickened magnetite layers or magnetite pipes of the upper portions of intrusions, (vii) gold and copper in the roof rocks and contact aureoles of the large intrusions, and (viii) lateritic nickel in weathered portions of olivine-rich ultramafic intrusions.  相似文献   

7.
Whole-rock geochemical and Sr, Nd and Pb isotope data are presented for the Harrat Al-Madinah volcanic field, in the north western part of the Arabian plate, aiming to understand their origin and the composition of their mantle source. This area is an active volcanic field characterized by the occurrence of two historic eruptions approximately in 641 and 1256 A.D. Field investigation of the main volcanic landforms indicates dominantly monogenetic strombolian eruptions, in addition to local phreatomagmatic eruption style. The lavas consist mainly of alkali olivine basalt, olivine transitional basalt, and hawaiite with ocean island basalt (OIB)-like characteristics. Evolved rocks, represented by mugearites, benmoreites, and trachytes, occur mainly as domes, tuff cones and occasionally as lava flows. Chemical variations in the evolved rocks indicated their evolution by low pressure crystal fractionation of olivine, plagioclase, clinopyroxene, and Fe–Ti oxides from the relatively primitive basalts. The isotopic compositions of 143Nd/144Nd (0.512954–0.512995), 87Sr/86Sr (0.702899 to–0.702977) and Pb (206Pb/204Pb = 18.5515–18.7446, 207Pb/204Pb = 15.5120–15.5222, 208Pb/204Pb = 38.1347–38.4468), show restricted variations suggesting only minor crustal contamination. They defined an array consistent with mixing of two geochemically distinct components of depleted MORB-mantle (DMM) and high 238U/204Pb ratio (HIMU). The variations in Tb/Yb, La/Yb and Sm/Yb ratios in the relatively primitive basalts (MgO > 6 wt.%) indicated garnet peridotite source. However, the positive Nb, Sr, Ba and Ti anomalies in the primitive mantle-normalized incompatible element patterns and the significant variation between Zr/Nb vs. Ce/Y and La/Yb vs. Yb suggest contribution of an amphibole-bearing spinel lherzolite source. Moreover, the negative correlations between SiO2 vs. 87Sr/86Sr and Th vs. 143Nd/144Nd are interpreted as an indication of mixing melts derived from two end-members; one is garnet bearing asthenospheric source with OIB characteristic and the other is amphibole-bearing spinel lherzolite. The Harrat Al-Madinah volcanic field occurs near the Red Sea Rift System and its origin reflects a strong lithospheric control on the loci of partial melting. The dominantly NNW alignment patterns of the volcanoes, which is similar to the regional Red Sea trend, may suggest that the magmas were produced by decompression partial melting triggered by lithospheric extension related to the Red Rift.  相似文献   

8.
Five major felsic igneous suites from northern Vietnam, with ages from mid-Proterozoic to early Cenozoic, were studied. Representative granitic rocks from the Posen Complex (mid-Proterozoic) and the Dienbien Complex (late Permian to early Triassic) show geochemical characteristics similar to those of calc-alkaline to high-K calc-alkaline I-type granites. However, the former, located in the South China block, has significantly higher initial Nd isotopic ratios [εNd(T)=+0.7 to +1.5] and older Nd isotopic model ages (TDM∼1.7 Ga) than the latter [εNd(T)=−4.7 to −9.7; TDM∼1.3–1.5 Ga] which were emplaced south of the Song Ma Suture and thus in the Indochina block. The generation of both complexes may be attributed to subduction-related processes that occurred in two distinct crustal provenances with different degrees of mantle inputs. On the other hand, Jurassic to Cretaceous granitic rocks from the Phusaphin Complex, contemporaneous rhyolites from the Tule Basin, and late Paleogene granitic rocks from the Yeyensun Complex, all exposed in the South China block between the Ailao Shan–Red River shear zone and the Song Ma Suture, display geochemical features similar to those of A-type granites with intermediate εNd(T) values (+0.6 to −2.8) and younger TDM ages (0.6–1.1 Ga). These magmas are suggested to have been generated as a consequence of intraplate extension in the western part of the South China block (Yunnan), and to have been transported to their present position by mid-Tertiary continental extrusion along the Ailao Shan–Red River shear zone related to the India–Asia collision. Overall, the isotopic and model age data, reported in this study indicate that in northern Vietnam, the most important crust formation episode took place in the Proterozoic. Likewise, repeated mantle inputs have played a role in the petrogenesis of Phanerozoic granitic rocks.  相似文献   

9.
The Tower Hill gold deposit is distinguished from most Archaean lode deposits of the Yilgarn Craton by virtue of its formation early in the regional deformation history and its consequent deformation. The deposit is located in ultramafic schist, adjacent to the contact with a small pluton of biotite monzogranite that intrudes pervasively foliated granodiorite, the dominant component of the Raeside Batholith. Gold, accompanied by local concentrations of bismuth minerals and molybdenite, occurs in a number of quartz vein ‘packages‘. Mineralised quartz veins at Tower Hill lie within an envelope of potassic alteration (talc‐biotite‐chlorite‐pyrite schist), up to several hundred metres wide. They are spatially and temporally associated with the biotite monzogranite and felsic porphyry intrusions, and their deformed equivalents. The deposit lies in a broad zone of ductile deformation (the Sons of Gwalia Shear Zone). Within the altered ultramafic schist, thin units of felsic schist, derived from biotite monzogranite and felsic porphyry, provided sites of contrasting competency that localised quartz vein formation. The mineralised quartz veins were subsequently deformed during alternating periods of shortening and extension, probably related to the syntectonic, solid‐state emplacement of the Raeside Batholith. These deformations pre‐dated strike‐slip movement on the Cemetery Fault, which truncates the ductile fabrics of the Sons of Gwalia Shear Zone, south of Tower Hill. In terms of the regional deformation history, gold mineralisation at Tower Hill formed during early D2 (regional upright folding); subsequent deformation of the orebody pre‐dated D3 (strike‐slip movement on the Cemetery Fault). The nearby Sons of Gwalia and Harbour Lights deposits also probably formed at an early stage, in contrast to most lode gold deposits in the Yilgarn Craton, which formed during or after D3.  相似文献   

10.
Rocks in the northern Leeuwin Complex of southwestern Australia preserve evidence of having formed during the breakup of Rodinia and the subsequent amalgamation of Gondwana. Detailed field mapping, structural investigation and U–Pb isotopic zircon analysis, using the Sensitive High‐mass Resolution Ion Microprobe (SHRIMP), have revealed that: (i) protoliths of pink granite gneiss and grey granodiorite gneiss crystallised at ca 750 Ma, coeval with breakup of western Rodinia; (ii) granulite/upper amphibolite facies metamorphism occurred at 522 ± 5 Ma, in the Early Cambrian, ~100 million years later than previous estimates and of identical age to estimates of the final amalgamation of Gondwana; and (iii) three major phases of ductile deformation occurred during or after this metamorphism and represent a progressive strain evolution from subvertical shortening (D1) to subhorizontal east‐west (D2) then north‐northwest‐south‐southeast (D3) contraction.  相似文献   

11.
Doklady Earth Sciences - The isotope and geochemical characteristics of Eocene–Oligocene igneous rocks of Western Kamchatka were studied. It was shown that igneous rocks of the Eocene Kinkil...  相似文献   

12.
The Sr–Nd–Hf isotopic compositions of both saprolites and parent rocks of a profile of intensively weathered Neogene basalt in Hainan, South China are reported in this paper to investigate changes of isotopic systematics with high masses. The results indicate that all these isotopic systematics show significant changes in saprolites compared to those in corresponding parent rocks. The 87Sr/86Sr system was more seriously affected by weathering processes than other isotope systems, with εSr drifts 30 to 70 away from those of the parent rocks. In the upper profile (> 2.2 m), the Sr isotopes of the saprolites show an upward increasing trend with εSr changing from ~ 50 at 2.2 m to ~ 70 at 0.5 m, accompanying a upward increasing of Sr concentrations, from ~ 10 μg/g to ~ 25 μg/g. As nearly all the Sr of the parent rock has been removed during intensive weathering in this profile, the upward increasing of Sr concentrations in the upper profile suggests import of extraneous Sr. Rainwater in this region, which enriches in Sr (up to 139 μg/L) from seawater, may be the important extraneous source. Thus, the Sr isotopes of the saprolites in the upper profile may be mainly influenced by import of extraneous materials, and the Sr isotopic characteristics may not be retained. In contrast, the εNd and εHf of the saprolites drift only 0–2.6 and 0–3.7 away from the parent rocks, respectively. The negative drifts of the εNd and εHf are coupled with Nd and Hf losses in the saprolites; i.e., larger proportions of Nd and Hf loss correspond to lower εNd and εHf. Compared with the relative high Nd and Hf concentrations of the saprolites, the contributions of extraneous Nd and Hf both from wet and dry deposits of aeolian input are negligible. Thus, the εNd and εHf changes in the profile are mainly resulted from consecutive removal of the Nd and Hf. Calculation indicates that the 143Nd/144Nd and 176Hf/177Hf ratios in saprolites are all significantly lower than their initial values in the parent rock. Simply removing part of the Nd and Hf by incongruent decomposing some of the minerals may not account for this. Fractionation should be happen, which 143Nd and 176Hf may be preferentially removed from the profile relative to 144Nd and 177Hf during intensive chemical weathering, resulting in lower 143Nd/144Nd and 176Hf/177Hf ratios in saprolites relative to the parent rock, even though details for this process is not known. A positive correlation is observed between the εNd and εHf of the saprolites. Interestingly, the saprolites with a net loss of Nd and Hf in the upper profile show good positive correlation, and the regression line parallels the terrestrial array. By contrast, saprolites with a net gain of Nd and Hf in the lower profile generally show higher εHf values at a given εNd value, and the regression line between these εNd and εHf appears to parallel the seawater array. This supports the hypothesis that the contribution of continental Hf from chemical weathering release is the key to the obliquity of the seawater array away from the terrestrial array of the global εNd and εHf correlation. Our results also indicate that caution is needed when using εSr, εNd, and εHf to trace provenances for sediments and soils.  相似文献   

13.
Greenstone belts in the northern Murchison Terrane of the Yilgarn Craton contain an extensive suite of 2.9–3.0 Ga, porphyritic komatiites and komatiitic volcaniclastic rocks. These unusual Ti–rich Al–depleted komatiites have been sampled at Gabanintha and are characterised by higher incompatible‐element abundances than most suites of Barberton‐type Al–depleted komatiites. They form a petrogenetically related group with similar Ti– and incompatible‐element‐rich, Al–depleted porphyritic komatiites and komatiitic volcaniclastic rocks from Karasjok in Norway, Dachine in French Guiana and Steep Rock‐Lumby Lake in Canada (here called Karasjok‐type komatiites). Their Al–depletion results from magma generation at depths of >250 km in the presence of residual majorite‐garnet. The porphyritic textures and abundance of amygdales and volcaniclastic rocks typical of this type of komatiite are features of hydrous ultramafic magmas. The incompatible‐element‐rich ultramafic rocks from Dachine contain diamonds that were most likely picked up as parent magmas interacted with mantle lithosphere that had been hydrated and chemically modified. Consequently the interaction of Karasjok‐type komatiite magmas with thick, island arc or continental mantle lithosphere may have resulted in their elevated water and incompatible‐element contents. The occurrence of Karasjok‐type komatiite lavas and volcaniclastic rocks in the northern Murchison Terrane suggests that during the Late Archaean that terrane had a hydrated, metasomatised or subduction‐modified mantle lithosphere.  相似文献   

14.
Zircons from Archean granites from the Darling Range Batholith in the Yilgarn Craton of Western Australia have been shown to have complexly discordant U–Pb systems with a strong component of zero age disturbance. The only geological event that has affected the granites in recent times is the pervasive regional weathering. Our aim in this study was to investigate the effects of weathering on the U–Pb and oxygen systems of the zircons, and to this end, we report secondary ion mass spectrometry (SIMS) results of OH, oxygen and U–Pb isotope systems of six typical zircons from a sample of the granite. These results confirmed the presence of OH in highly radiation-damaged parts of the zircons, demonstrating fluid interaction within grains. The presence of OH was accompanied by significant changes in the 18O/16O ratios. The data suggest trends where δ18O values in individual grains both increase and decrease with increasing OH. SIMS measurements showed the U–Pb systems are variably and unsystematically discordant in radiation-damaged parts of the zircons, particularly those with elevated OH contents. The complex U–Pb systems are interpreted in terms of multiple disturbance events between 450 and 0 Ma involving low-temperature fluid-induced movement of radiogenic Pb, decoupled from parent U and Th, within the radiation-damaged zircons, together with some Pb loss.  相似文献   

15.
The Dexing porphyry copper deposit, part of the circum-Pacific porphyry copper ore belt, is the largest porphyry copper deposit in China. We present new LA–ICP–MS zircon U–Pb and molybdenite Re–Os dating, bulk-rock elemental and Sr–Nd–Pb isotopic as well as in situ zircon Hf isotopic geochemistry for these ore-bearing porphyries, in an attempt to better constrain their petrogenesis. LA–ICP–MS zircon U–Pb dating shows that the Dexing porphyries were emplaced in the early Middle Jurassic (~171 Ma); molybdenite Re–Os dating indicates that the associated Cu–Mo mineralization was contemporaneous (~171 Ma) with the igneous intrusion. The rocks are mainly high-K calc-alkaline and show adakitic affinities, including high Sr and low Y and Yb contents, high Sr/Y and La/Yb ratios, and high Mg# (higher than pure crustal melts). These porphyries have initial 87Sr/86Sr ratios of 0.7044?0.7047, ?Nd(T) values of –1.5 to?+0.6, and ?Hf(T) (in situ zircon) values of?+2.6 to?+4.6. They show unusually radiogenic Pb isotopic compositions with initial 206Pb/204Pb ratios up to 18.41 and 207Pb/204Pb up to 15.61. These isotopic compositions are distinctly different from either Pacific MORB or Yangtze lower crust but are similar to the subducting sediments in the western Pacific trenches. Detailed elemental and isotopic data suggest that the Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeo-Pacific plate. Partial melting involved the subducted slab (mainly the overlying sediments), with generated melts interacting with the lithospheric mantle wedge, thereby forming the investigated high-K calc-alkaline porphyry magmas.  相似文献   

16.
The Mid to Late Miocene intraplate alkaline volcanic suites of western Bohemia are relict of the intensive voluminous volcanism accompanied by large-scale uplift and doming. The association with the uplift of the NE flank of the Cheb–Domažlice Graben (CDG) is uncertain in view of the mostly transpressional tectonics of the graben. The volcanism is most probably of the Ohře/Eger Rift off-rift settings. Two cogenetic volcanic suites have been recognised: (i) silica-saturated to oversaturated consisting of olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite (13.5 to 10.2 Ma) and (ii) silica-undersaturated (significantly Ne-normative) (melilite-bearing) olivine nephelinite–basanite–tephrite (18.3 to 6.25 Ma). A common mantle source is suggested by similar primitive mantle-normalised incompatible element patterns and Sr–Nd–Pb isotopic compositions for the assumed near-primary mantle-derived compositions of both suites, i.e., olivine basalt and olivine nephelinite. Apparently, they were generated by different degrees of partial melting of a common mantle source, with garnet, olivine and clinopyroxene in the residuum. Negative Rb and K anomalies indicate a residual K-phase (amphibole/phlogopite) and melting of partly metasomatised mantle lithosphere. The evolution of the basanite–olivine basalt–trachybasalt-(basaltic) trachyandesite–trachyte–rhyolite suite suggests the presence of an assimilation–fractional crystallization process (AFC). Substantial fractionation of olivine, clinopyroxene, Fe–Ti oxide, plagioclase/alkali feldspar and apatite accompanied by a significant assimilation of magma en route by crustal material is most evident in evolved member, namely, trachytes and rhyolites. The magmas were probably sourced by both sub-lithospheric and lithospheric partly metasomatised mantle. The evolution of the (melilite-bearing) olivine nephelinite–basanite–tephrite suite is less clear because of its limited extent. Parental magma of both these rock suites is inferred to have originated by low-degree melting of the mantle source initiated at ca. 18 Ma and reflects mixing of asthenosphere-derived melts with isotopically enriched lithospheric melts. The older Oligocene alkaline rocks (29–26 Ma) occur within the Cheb–Domažlice Graben (CDG) locally but are significant in the closely adjacent neighbouring western Ohře Rift. The Sr–Nd–Pb isotopic composition of primitive volcanic rocks of both suites is similar to that of the European Asthenospheric Reservoir (EAR). Initial Pb isotopic data plot partly above the northern hemisphere reference line at radiogenic 206Pb/204Pb ratios of ∼19 to 20, and indicate the presence of a Variscan crustal component in the source.  相似文献   

17.
Volcán Popocatépetl has explosively erupted in Plinian style at least five times in the last 23,000 years. Extreme deviations in composition and the occurrence of dissolution features in plagioclase and pyroxene, and the occasional presence of xenocrysts of Cr-rich Fe–Ti oxides and Mg-rich olivines and pyroxenes indicate that magma mixing has been a major process affecting the magmatic system. The nearly invariant composition of the erupted products (andesitic–dacitic) suggests, however, that mixing is not acting alone and must be balanced by assimilation and/or crystallization. To investigate the magmatic processes that have modified the Plinian magmas, textural and compositional variations and growth rates in plagioclase were used to approximate the frequency of mixing events affecting each magma. Systematic analysis of Sr, Nd, and Pb isotopes was carried out on plagioclase, pyroxene, and pumice matrix glass to constrain the extent of assimilation of upper crustal rocks. Additionally, a series of phase equilibrium experiments were carried out to constrain the depth where such mixing and assimilation occurred. We find that magma was stored at one of two different depths beneath Popocatépetl with magma mixing acting in both reservoirs. Mixing frequency and the relative impact on mineral compositions and textures has varied with time. Assimilation of calcareous rocks underneath Popocatépetl has not been pervasive and does not contribute significantly to the evolution of the Plinian magmas. The similar compositions of magmas with diverse mixing histories suggest that fractional crystallization, and possibly assimilation of deep crust, takes place at depth and that intermediate magmas ascend into the upper crust already differentiated.  相似文献   

18.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

19.
The paper reports the results of Pb isotope study of several gold deposits of the Russia’s largest metallogenic province of Northern Transbaikalia. Potential sources of the ore material are considered by the example of new and previously published Pb–Pb data on nine deposits and occurrences of different scales. The comparison of Pb–Pb isotope-geochemical characteristics of ores, Paleozoic granitoids, as well as metamorphic pyrite from barren metasedimentary sequences shows that the Neoproterozoic terrigenous–carbonate rocks of the Baikal–Patom fold belt (BPB) served as the main source of lead and other components in the mineral-forming systems of the deposits. Significant variations of Pb isotope ratios typical in general of the considered deposits of the BPB reflect the initial isotopic heterogeneity of Pb source. This heterogeneity is caused by mixing of two geochemical types of continental crust during sedimentation: old (Early Precambrian) crust of the Siberian craton with long-term geochemical evolution and newly formed Late Precambrian crust. Pb–Pb data serve in support of the hydrothermal–metamorphogenic hypothesis of the formation of gold deposits of the BPB.  相似文献   

20.
Western Yunnan is composed of several extruded continental microblocks that were generated by the oblique collision between the Indian and Asian continents during the Cenozoic. In this study, the magmatic and tectonic frameworks of western Yunnan in the Cenozoic were analyzed based on geochemistry, Sr–Nd–Pb isotopes, and apatite/zircon fission track dating. Magmatism during the Cenozoic in western Yunnan was then divided into three distinctive episodes: alkali granite rocks produced from 55 to 46 Ma were derived from the anatexis of crustal materials; bimodal igneous rocks formed between 37 and 24 Ma were possibly derived from an EMII mantle with a contribution from continental materials; and intermediate–basic volcanic rocks produced in the Tengchong microblocks since ~16 Ma are considered to be generated by the partial melting of the upper mantle that was induced by the pulling apart of the dextral Gaoligong strike–slip fault system. Moreover, fission track analysis of apatite and zircon indicates that the regional crustal uplift in western Yunnan possibly began at ~34 Ma, with accelerated annealing occurring at ~24 Ma, ~13 Ma, and ~4 Ma. During the past 24 Ma, the average denudation rate was ~0.32 mm/yr for the faulted block controlled by the Chongshan–Lancang River fault. However, crustal uplift has been relatively gentle in places lacking influence from strike–slip shear zones, with an average denudation rate of ~0.2 mm/yr. Combined with strike–slip shear and block rotation in the Cenozoic, the tectonic evolution of western Yunnan since ~45 Ma can thus be divided into four stages occurring at 45–37 Ma, 37–24 Ma, 24–13 Ma, and 13–0 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号