首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If the Earth was formed by accumulation of rocky bodies in the presence of the gases of the primordial solar nebula, the Earth at this formation stage was surrounded by a massive primordial atmosphere (of about 1 × 1026 g) composed mainly of H2 and He. We suppose that the H2 and He escaped from the Earth, owing to the effects of strong solar wind and EUV radiation, in stages after the solar nebula itself dissipated into the outer space.The primordial atmosphere also contained the rare gases Ne, Ar, Kr and Xe whose amounts were much greater than those contained in the present Earth's atmosphere. Thus, we have studied in this paper the dissipation of these rare gases due to the drag effect of outflowing hydrogen molecules. By means of the two-component gas kinetic theory and under the assumption of spherically symmetric flow, we have found that the outflow velocity of each rare gas relative to that of hydrogen is expressed in terms of only two parameters — the rate of hydrogen mass flow across the spherical surface under consideration and the temperature at this surface. According to this result, the rare gases were dissipated below the levels of their contents in the present atmosphere, when the mass loss rate of hydrogen was much greater than 1 × 1017 g/yr throughout the stages where the atmospheric mass decreased from 1 × 1026 g to 4 × 1019 g.  相似文献   

2.
地震断裂带中气体来源及运移机制研究进展   总被引:1,自引:0,他引:1  
随着新的观测技术和理论的快速发展,地震断裂带气体观测和同位素分析技术都得到长足发展,为研究微量气体运移机制以及气体来源示踪提供了重要的技术支撑.本文简要介绍了前人利用同位素技术在深部物质来源研究方面的主要进展,详细阐述了断裂带中微量气体的特征、气体运移的影响因素以及气体运移机制和理论模型,包括扩散对流作用、接力传递作用...  相似文献   

3.
Yang  Chun  Luo  Xia  Li  Jian  Li  ZhiSheng  Liu  QuanYou  Wang  YuLin 《中国科学:地球科学(英文版)》2008,51(1):140-147

The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than −20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.

  相似文献   

4.
Low-mature gases and typical low-mature gas fields in China   总被引:2,自引:0,他引:2  
No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 ×108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great significance in research on and exploration of low-mature gases in China.  相似文献   

5.
The Xushen gas field, located in the north of Songliao Basin, is a potential giant gas area for China in the future. Its proved reserves have exceeded 1000×108 m3 by the end of 2005. But, the origin of natural gases from the deep strata is still in debating. Epimetamorphic rocks as a potential gas source are widely spreading in the northern basement of Songliao Basin. According to pyrolysis experiments for these rocks in the semi-confined system, gas production and geochemistry of alkane gases are discussed in this paper. The Carboniferous-Permian epimetamorphic rocks were heated from 300°C to 550°C, with temperature interval of 50°C. The gas production was quantified and measured for chemical and carbon isotopic compositions. Results show that δ 13C1 is less than ?20‰, carbon isotope trend of alkane gas is δ 13C1<δ 13C2<δ 13C3 or δ 13C1<δ 13C2>δ 13C3, these features suggest that the gas would be coal-type gas at high-over maturity, not be inorganic gas with reversal trend of gaseous alkanes (δ 13C1>δ 13C2>δ 13C3). These characteristics of carbon isotopes are similar with the natural gas from the basin basement, but disagree with gas from the Xingcheng reservoir. Thus, the mixing gases from the pyrolysis gas with coal-typed gases at high-over maturity or oil-typed gases do not cause the reversal trend of carbon isotopes. The gas generation intensity for epimetamorphic rocks is 3.0×108–23.8×108 m3/km2, corresponding to R o from 2.0% to 3.5% for organic matter.  相似文献   

6.
Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system(PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gases. Mica minerals are often used for ~40Ar/~39 Ar dating. A muscovite sample(2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10~#174; getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system(OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the ~40Ar intensities increase in curves with inlet time because of impurities, the ~40Ar/~39 Ar dating results yield age errors about ±2%–±1%(2σ). When the OGRS is opened for purification, in contrast, the ~40 Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 4~0Ar/~39 Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.  相似文献   

7.
Detonation gases released by an underground nuclear test include trace amounts of 133Xe and 37Ar. In the context of the Comprehensive Nuclear Test Ban Treaty, On Site Inspection Protocol, such gases released from or sampled at the soil surface could be used to indicate the occurrence of an explosion in violation of the treaty. To better estimate the levels of detectability from an underground nuclear test (UNE), we developed mathematical models to evaluate the processes of 133Xe and 37Ar transport in fractured rock. Two models are developed respectively for representing thermal and isothermal transport. When the thermal process becomes minor under the condition of low temperature and low liquid saturation, the subsurface system is described using an isothermal and single-gas-phase transport model and barometric pumping becomes the major driving force to deliver 133Xe and 37Ar to the ground surface. A thermal test is simulated using a nonisothermal and two-phase transport model. In the model, steam production and bubble expansion are the major processes driving noble gas components to ground surface. After the temperature in the chimney drops below boiling, barometric pumping takes over the role as the major transport process.  相似文献   

8.
Along both sides of the Tancheng-Lujiang Fracture Zone in eastern China, a series of mantle source gas pools constitute a massive-scale tectonic accumulation zone in NNE direction, with the mantle geochemical characteristics of high concentrations of C02 and He, high3He/4He-40Ar/36Ar ratio system and high δ13Coo2 ratios (the main frequency, -3.4%— 4.6%), showing no difference from the tectonic framework of the area. In the area, the tectonic environment is a rift formed as a result of diapiric mantle injection and crust thinning to form graben-type basins and lithospheric fractures. The mantle-derived volcanic rocks and inclusions are well-developed and a high geothermal zone (mantlesource) exists in the area. The characteristics of the three components (solid, liquid and gas) of mantle, concentrated all over the same tectonic space zone, show that the rift system is of a good tectonic environment or passage for mantle degassing and gas migration. The main types of the gas pools are volcano, fault-block, anticline, buried hill and so on, but most of them are combination traps closely related with fracture. For the mantle source gas pools, rift is an optimum tectonic region, and nearby lithospheric fracture, mantle source volcanic rocks or basement uplifts are a favourable structural location when reservoir-caprock association develops.  相似文献   

9.
通过甘东南地震危险区地震宏观异常观测实例分析,系统研究CO_2气体在地震构造活动过程中的地球化学演化过程,以及发生的一系列酸碱平衡和氧化还原化学反应。结果表明地下深部CO_2气体不仅是其他微量气体Rn等向地表方向运移的载体,而且参与酸碱平衡和氧化还原反应,是地下深部生物化学反应的重要影响条件,地震前兆及宏观异常现象的发生常伴随着CO_2的异常变化。因此CO_2气体可以作为良好的示踪气体,在地震前兆观测及重大异常落实中尤其要重视对其进行监测。  相似文献   

10.
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale‐gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near‐pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre‐industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane‐rich samples were associated with high‐salinity, NaCl‐type groundwater and elevated levels of ethane, 4He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ13C‐CH4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane‐rich samples record a history of fractionation during gas‐phase migration from source rocks to shallow aquifers. Conversely, methane‐poor samples have a paucity of ethane and 4He, near saturation levels of atmospheric noble gases, and more negative δ13C‐CH4; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas).  相似文献   

11.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

12.
Radon anomalies and volcanic eruptions   总被引:1,自引:0,他引:1  
A well-documented case of 222Rn anomaly preceding the eruptive activity of Karymsky volcano (Kamchatka) was recently reported in the literature. Stimulated by this example, we have attempted to utilize the available data on radon emanation from rocks, its solubility, and its circulation in waters to discuss how a 222Rn anomaly can be produced by magma approaching the surface. It is shown that the most likely process of radon release is the flushing of gases through pore fluids. Heating of extensive fracture surfaces by high-temperature gases may also be important. In order to survive in detectable amounts after moving distances greater than a few meters, radon must be transported by fast-moving fluids, such as those rising toward the surface through a fracture or in the ascending limbs of fluids convecting in very porous rocks under high temperature gradients. The pattern observed at Karymsky volcano is interpreted on the basis of these relations.  相似文献   

13.
The extreme scarcity of data on the behavior of the paleointensity H an in the geological past from rocks older than 400 Ma significantly hinders the development of our ideas of the geomagnetic field evolution and the geological history of the Earth as a planet. This work presents H an determinations for the Early Proterozoic using the Thellier method and meeting modern requirements for their reliability. The data are obtained from 1850-Ma rocks of granite intrusions sampled in the south of the Siberian platform. The rocks are virtually unaltered granites and granitoids. The paleointensity was determined on 15 samples; results from 11 samples were found to be suitable for the calculation of H an, which is good for experiments of this type. The common feature in the behavior of the natural remanent magnetization (NRM) is a very narrow interval of blocking temperatures: destruction of (60–90)% NRM often took place between 500 and 550°C. Because of the large thickness of the sampled magmatic body, the paleointensity estimates were corrected for its slow cooling rate. With regard for this correction, the probable value of the virtual dipole moment (VDM) from the given collection amounts to 5 × 1022 A m2. Analysis of all published data obtained by the Thellier method for the Precambrian and satisfying the well-known minimal criteria of reliability showed that the average VDM value is about 2 × 1022 A m2, which is four times smaller than the VDM value of the last million years. This phenomenon can be interpreted in terms of the hypothesis that the solid inner core formed only in Proterozoic and, in its absence, the generation of the geomagnetic field was relatively weak, which yielded a small intensity value of the geomagnetic field at early stages of the Earth’s evolution.  相似文献   

14.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

15.
Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than ?44‰, ?29‰ and ?26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \(C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than ?10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

16.
Kinetic experiments of gas generation for typical samples of marine gas precursors including low-maturity kerogen, residual kerogen and oil as well as dispersed liquid hydrocarbon (DLH) in source rocks were performed by closed system, and the evolution trends of molecular and isotopic compositions of natural gases from different precursors against the maturity (R 0%) at laboratory conditions were analyzed. Several diagrams of gas origin were calibrated by using the experimental data. A diagram based on the ratio of normal and isomerous butane and pentane (i/nC4 ? i/nC5) was proposed and used to identify the origins of the typical marine natural gases in the Sichuan Basin and the Tarim Basin, China. And the maturities of natural gases were estimated by using the statistical relationships between the gaseous molecular carbon isotopic data and maturities (δ13C-R 0%) with different origins. The results indicate that the molecular and isotopic compositions of simulated gases from different precursors are different from each other. For example, the dryness index of the oil-cracking gas is the lowest; the dryness indices of gases from DLH and kerogen in closed system are almost the same; and the dryness index of gases from residual kerogen is extremely high, indicating that the kerogen gases are very dry; the contents of non-hydrocarbon gases in kerogen-cracking gases are far higher than those in oil-cracking and DLH-cracking gases. The molecular carbon isotopes of oil-cracking gases are the lightest, those of kerogen in closed system and GLH-cracking gases are the second lightest, and those of cracking gases from residual kerogen are the heaviest. The calibration results indicate that the diagrams of In(C1/C2)-In(C2/C3) and δ4 3C24 3C3-In(C2/C3) can discriminate primary and secondary cracking gases, but cannot be used to identify gas origin sources, while the diagram of i/nC4 ? i/nC5 can differentiate the gases from different precursors. The application results of these diagrams show that gas mixtures extensively exist in China, which involved the gases from multiple precursors and those from different maturity stages. For example, marine gases in the Sichuan Basin involve the mixture of oil-cracking gases and high-over-maturated kerogen gases, while those in the Tarim Basin involve not only the mixture of gases from multiple precursors, but also those from different maturity gases and post-reservoir alternations such as oxidized degradation and gas intrusion processes.  相似文献   

17.
This paper surveys the history of the Earth's climate and deals with facts, techniques, and causes. A review of climatic history since the origin of the Earth demonstrates the changes and variability of our climate along different scales. These variations can probably be fully understood only when taking into account both external forcing and non-linear interactions between the components of the climatic system: atmosphere, oceans, cryosphere, lithosphere, and biosphere. At least, as far as boundary conditions and forcing are concerned for the 108 to 109 yr time scale, atmospheric composition, solar evolution, and tectonism have to be considered, while variations of the Earth's orbital elements, and subsequently of the insolation, best explain the glacial-interglacial occurrences during the Quaternary Period. For shorter time scales, volcanic dust, solar activity, sea surface temperatures, and atmosphere-ocean autovariations have to be taken into account. Furthermore, the man-made effects have now to be considered: atmospheric loading of dust and air pollution particles, changes in surface albedo, and mainly the increasing rise of atmospheric CO2 and other trace gases adding to a greenhouse effect.This man-made warming effect of future CO2 increase will probably emerge as a clearly recognizable trend against the background of natural climatic fluctuations by the end of this century. This carbon dioxide induced super-interglacial will be superimposed on the expected natural long-term cooling trend of the ice age chronology.  相似文献   

18.
This study aims to evaluate the application of 222Rn in groundwater as a tracer for monitoring CO2 plume migration in a shallow groundwater system, which is important to detect potential CO2 leakage in the carbon capture and storage (CCS) project. For this research, an artificial CO2-infused water injection experiment was performed in a shallow aquifer by monitoring hydrogeochemical parameters, including 222Rn. Radon in groundwater can be a useful tracer because of its sensitivity to sudden changes in subsurface environment. To monitor the CO2 plume migration, the data were analysed based on (a) the influence of mixing processes on the distribution of 222Rn induced by the artificial injection experiment and (b) the influence of a carrier gas role by CO2 on the variation of 222Rn. The spatio-temporal distributions of radon concentrations were successfully explained in association with horizontal and vertical mixing processes by the CO2-infused water injection. Additionally, the mixing ratios of each monitoring well were calculated, quantitatively confirming the influence of these mixing processes on the distribution of radon concentrations. Moreover, one monitoring well showed a high positive relationship between 222Rn and Total dissolved inorganic carbon (TIC) by the carrier gas effect of CO2 through volatilization from the CO2 plume. It indicated the applicability of 222Rn as a sensitive tracer to directly monitor CO2 leakage. When with a little effect of carrier gas, natural 222Rn in groundwater can be used to compute mixing ratio of CO2-infused water indicative of CO2 migration pathways. CO2 carrier gas effect can possibly increase 222Rn concentration in groundwater and, if fully verified with more field tests, will pose a great potential to be used as a natural tracer for CO2.  相似文献   

19.
Heat and mass transfer rates were studied at the Niragongo lava lake during two expeditions directed by H. Tazieff in 1959 and 1972. The results of this study are as follows:Heat is transferred to the surface of the lake by the movement of lava; gas discharge is a result and not the cause of convection. The chemical composition of the gases and magma has changed very little between 1959 and 1972, whereas the mass and energy outputs differ by an order of magnitude. In 1977 a catastrophic explosion seems to have been caused by tectonic factors, stopping the slow convection of magma under the volcano and hence reducing surface manifestations in the form of the lava lake and escaping fumarolic and magmatic gases. The gas discharge was, in tons day−1, 5000 for H2O, 11,000 for CO2, 1000 for SO2 in 1959, and in 1972 7700 for H2O, 180,000 for CO2 and 23,000 for SO2. These values correspond to an energy transfer of 0.9 × 109 W in 1959 and 16 × 109 W in 1972.  相似文献   

20.
The isotopic composition and abundances of He, Ne and Ar have been measured in a sequence of vertically stacked gas reservoirs at Hajduszoboszlo and Ebes, in the Pannonian Basin of Hungary. The gas reservoirs occur at depths ranging from 727 to 1331 m, are CH4 dominated and occupy a total rock volume of approximately 1.5 km3. There are systematic variations in both major species abundances and rare gas isotopic composition with depth: CO2 and N2 both increase from 0.47 and 1.76% to 14.1 and 30.5%, respectively, and 40Ar/36Ar and 21Ne/22Ne increase systematically from 340 and 0.02990 at 727 m to 1680 and 0.04290 at 1331 m. A mantle-derived He component between 2 and 5% is present in all samples, the remainder is crustal-radiogenic He. The Ar and Ne isotope variations arise from mixing between atmosphere-derived components in groundwater, and crustally produced radiogenic Ar and Ne. The atmosphere-derived 40Ar and 21Ne decreases from 85 and 97% of the total 40Ar and 21Ne at 727 m to 18 and 68% at 1331 m. The deepest samples are shown to have both atmosphere-derived and radiogenic components close to the air-saturated water and radiogenic production ratios. The shallowest samples show significant fractionation of He/Ar and Ne/Ar ratios in atmosphere-derived and radiogenic rare gas components, but little or no fractionation of He/Ne ratios. This suggests that diffusive fractionation of rare gases is relatively unimportant and that rare gas solubility partitioning between CH4 and H2O phases controls the observed rare gas elemental abundances.The total abundance of atmosphere-derived and radiogenic rare gas components in the Hajduszoboszlo gas field place limits on the minimum volume of groundwater that has interacted with the natural gas, and the amount of crust that has degassed and supplied radiogenic rare gases. The radiogenic mass balance cannot be accounted for by steady state production either within the basin sediments or the basement complex since basin formation. The results require that radiogenic rare gases are stored at their production ratios on a regional scale and transported to the near surface with minimal fractionation. The minimum volume of groundwater required to supply the atmosphere-derived rare gases would occupy a rock volume of some 1000 km3 (assuming an average basin porosity of 5%), a factor of 670 greater than the reservoir volume. Interactions between groundwater and the Hajduszoboszlo hydrocarbons has been on a greater scale than often envisaged in models of hydrocarbon formation and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号