首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The dispersal of volcanic ash from the May 18, 1980 eruption of Mount St. Helens (MSH) has been simulated using the Lagrangian ash-tracking model PUFF. Previous applications of the model were limited to smaller, short-lived eruptions with ash dispersal occurring mainly within the troposphere. Two high-resolution atmospheric reanalysis datasets (ERA-40 and NCEP/NCAR-40) allowed MSH ash cloud dispersal to be simulated up to 30 km elevation. The 1980 eruption was divided into two distinct eruptive phases, (1) an initial, relatively short-lived blast/surge phase that injected ash up to 30 km and (2) a subsequent nine-hour plinian phase that maintained an average eruption column height of 16 km. Using PUFF, the two phases of the MSH eruption were modeled separately based on a range of individual input parameters and then combined to produce an integrated simulation of the entire eruption. The trajectory and areal extent of the modeled atmospheric ash cloud best match the actual distribution of MSH ash when input parameters are set to values inferred from satellite and radar data collected on May 18, 1980. The prevailing wind field exerts the strongest control on the advection and ultimate position of the modeled ash cloud, making the maximum column height and the vertical distribution of ash the most sensitive of the PUFF input parameters for this event. The results indicate that the PUFF model works well at simulating the dispersal of ash injected well into the lower stratosphere from a moderate, relatively long-lived eruption, such as MSH. However, attempts to use PUFF to recreate some granulometric aspects of the MSH fallout deposit, such as the maximum particle size as a function of distance from source, were not successful. PUFF consistently predicts much greater fallout distances for small ash particles (< 500 µm) than actually observed in the MSH deposit. The effective settling velocities used by the PUFF model appear to be too slow to accurately predict fallout distances of small ash particles. As a consequence the PUFF model may overestimate the duration of ash loading in the atmosphere associated with the distal fine ash component of explosive eruptions.  相似文献   

2.
Water is a dominant component of volcanic clouds and has fundamental control on very fine particle deposition. Particle size characteristics of distal tephra-fall (100s km from source volcano) have a higher proportion of very fine particles compared to predictions based on single particle settling rates. In this study, sedimentological analyses of fallout from for the 18 August and 16–17 September 1992 eruptions of Crater Peak, Alaska, are combined with satellite observations, and cloud trajectory and microphysics modeling to investigate meteorological influences on particle sedimentation. Total grain size distributions of tephra fallout were reconstructed for both Crater Peak eruptions and indicate a predominance of fine particles < 125 μm. Polymodal analysis of the deposits has identified a particle subpopulation with mode ~ 15–18 μm involved in particle aggregation. Accounting for the magmatic water source only, calculated ice water content of the 3.7 hour old September 1992 Spurr cloud was ~ 4.5 × 10− 2 g m− 3 (based on an estimated cloud thickness of ~ 1000 m from trajectory modeling). Hydrometeor formation on particles in the volcanic cloud and subsequent sublimation may induce a cloud base instability that leads to rapid bulk (en masse) sedimentation of very fine particles through a mammatus-like mechanism.  相似文献   

3.
During an explosive volcanic eruption, tephra fall out from the umbrella region of the eruption cloud to the ground surface. We investigated the effect of the intensity of turbulence in the umbrella cloud on dispersion and sedimentation of tephra by performing a series of laboratory experiments and three dimensional (3-D) numerical simulations. In the laboratory experiments, spherical glass-bead particles are mixed in stirred water with various intensities of turbulence, and the spatial distribution and the temporal evolution of the particle concentration are measured. The experimental results show that, when the root-mean-square of velocity fluctuation in the fluid (Wrms) is much greater than the particle terminal velocity (vt), the particles are homogeneously distributed in the fluid, and settle at their terminal velocities at the base of the fluid where turbulence diminishes. On the other hand, when Wrms is as small as or smaller than vt, the particle concentration increases toward the base of the fluid during settling, which substantially increases the rate of particle settling. The results of the 3-D simulations of eruption cloud indicate that Wrms is up to 40 m/s in most of the umbrella cloud even during a large scale plinian eruption with a magma discharge rate of 109 kg/s. These results suggest that relatively coarse pyroclasts (more than a few mm in diameter) tend to concentrate around the base of the umbrella cloud, whereas fine pyroclasts (less than 1/8 mm in diameter) may be distributed homogeneously throughout the umbrella cloud during tephra dispersion. The effect of the gradient of particle concentration in the umbrella cloud explains the granulometric data of the Pinatubo 1991 plinian deposits.  相似文献   

4.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   

5.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   

6.
Improved prediction and tracking of volcanic ash clouds   总被引:3,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   

7.
Primary igneous anhydrite was first identified in 1982 El Chichón pumices. Analysis of the sulfur budget for the eruption provided compelling evidence that the pre-eruptive magma contained a significant gas phase at ∼ 7 km depth in order to account for the “excess gas release” of ∼ 5–9 million tons of SO2 to the stratosphere by the eruption. Primary igneous anhydrite and a larger “excess gas release” of ∼ 20 million tons of SO2 were noted for the significantly larger eruption of Mount Pinatubo in 1991, for which a separate gas phase at ∼ 7–9 km depth was also required by the sulfur budget. Pumices from both eruptions have mineral assemblages dominated by plagioclase and hornblende, with minor biotite, and show evidence for co-nucleation and mutual inclusions of anhydrite and apatite. Both magmas were also very water-rich and highly oxidized, with oxygen fugacities $1 log unit above the synthetic Ni–NiO buffer. Furthering the similarities between these two eruptions, ion-microprobe analyses of sulfur isotopic compositions of anhydrites in pumices from El Chichón and Mount Pinatubo both showed that individual crystals are isotopically homogeneous, but inter-crystalline variations in δ34S are well beyond analytical error.  相似文献   

8.
Reducing discrepancies in ground and satellite-observed eruption heights   总被引:2,自引:2,他引:0  
The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982–2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested.  相似文献   

9.
A tephrostratigraphy for Erebus volcano is presented, including tephra composition, stratigraphy, and eruption mechanism. Tephra from Erebus were collected from glacial ice and firn. Scanning electron microscope images of the ash morphologies help determine their eruption mechanisms The tephra resulted mainly from phreatomagmatic eruptions with fewer from Strombolian eruptions. Tephra having mixed phreatomagmatic–Strombolian origins are common. Two tephra deposited on the East Antarctic ice sheet, ~ 200 km from Erebus, resulted from Plinian and phreatomagmatic eruptions. Glass droplets in some tephra indicate that these shards were produced in both phreatomagmatic and Strombolian eruptions. A budding ash morphology results from small spheres quenched during the process of hydrodynamically splitting off from a parent melt globule. Clustered and rare single xenocrystic analcime crystals, undifferentiated zeolites, and clay are likely accidental clasts entrained from a hydrothermal system present prior to eruption. The phonolite compositions of glass shards confirm Erebus volcano as the eruptive source. The glasses show subtle trends in composition, which correlate with stratigraphic position. Trace element analyses of bulk tephra samples show slight differences that reflect varying feldspar contents.  相似文献   

10.
Ash clouds are one of the major hazards that result from volcanic eruptions. Once an eruption is reported, volcanic ash transport and dispersion (VATD) models are used to forecast the location of the ash cloud. These models require source parameters to describe the ash column for initialization. These parameters include: eruption cloud height and vertical distribution, particle size distribution, and start and end time of the eruption. Further, if downwind concentrations are needed, the eruption mass rate and/or volume of ash need to be known. Upon notification of an eruption, few constraints are typically available on many of these source parameters. Recently, scientists have defined classes of eruption types, each with a set of pre-defined eruption source parameters (ESP). We analyze the August 18, 1992 eruption of the Crater Peak vent at Mount Spurr, Alaska, which is the example case for the Medium Silicic eruption type. We have evaluated the sensitivity of two of the ESP – the grain size distribution (GSD) and the vertical distribution of ash – on the modeled ash cloud. HYSPLIT and Puff VATD models are used to simulate the ash clouds from the different sets of source parameters. We use satellite data, processed through the reverse absorption method, as reference for computing statistics that describe the modeled-to-observed comparison. With the grain size distribution, the three options chosen, (1) an estimated distribution based on past eruption studies, (2) a distribution with finer particles and (3) the National Oceanic and Atmospheric Administration HYSPLIT GSD, have little effect on the modeled ash cloud. For the initial vertical distribution, both linear (uniform concentration throughout the vertical column) and umbrella shapes were chosen. For HYSPLIT, the defined umbrella distribution (no ash below the umbrella), apparently underestimates the lower altitude portions of the ash cloud and as a result has a worse agreement with the satellite detected ash cloud compared to that with the linear vertical distribution for this particular eruption. The Puff model, with a Poisson function to represent the umbrella cloud, gave similar results as for a linear distribution, both having reasonable agreement with the satellite detected cloud. Further sensitivity studies of this eruption, as well as studies using the other source parameters, are needed.  相似文献   

11.
The explosive rhyolitic eruption of Öræfajökull volcano, Iceland, in AD 1362 is described and interpreted based on the sequence of pyroclastic fall and flow deposits at 10 proximal locations around the south side of the volcano. Öræfajökull is an ice-clad stratovolcano in south central Iceland which has an ice-filled caldera (4–5 km diameter) of uncertain origin. The main phase of the eruption took place over a few days in June and proceeded in three main phases that produced widely dispersed fallout deposits and a pyroclastic flow deposit. An initial phase of phreatomagmatic eruptive activity produced a volumetrically minor, coarse ash fall deposit (unit A) with a bi-lobate dispersal. This was followed by a second phreatomagmatic, possibly phreatoplinian, phase that deposited more fine ash beds (unit B), dispersed to the SSE. Phases A and B were followed by an intense, climactic Plinian phase that lasted ∼ 8–12 h and produced unit C, a coarse-lapilli, pumice-clast-dominated fall deposit in the proximal region. At the end of Plinian activity, pyroclastic flows formed a poorly-sorted deposit, unit D, presently of very limited thickness and exposed distribution. Much of Eastern Iceland is covered with a very fine distal ash layer, dispersed to the NE. This was probably deposited from an umbrella cloud and is the distal representation of the Plinian fallout. A total bulk fall deposit volume of ∼ 2.3 km3 is calculated (∼ 1.2 km3 DRE). Pyroclastic flow deposit volumes have been crudely estimated to be < 0.1 km3. Maximum clast size data interpreted by 1-D models suggests an eruption column ∼ 30 km high and mass discharge rates of ∼ 108 kg s− 1. Ash fall may have taken place from heights around 15 km, above the local tropopause (∼ 10 km), with coarser clasts dispersed below that under a different wind regime. Analyses of glass inclusions and matrix glasses suggest that the syn-eruptive SO2 release was only ∼ 1 Mt. This result is supported by published Greenland ice-core acidity peak data that also suggest very minor sulphate deposition and thus SO2 release. The small sulphur release reflects the low sulphur solubility in the 1362 rhyolitic melt. The low tropopause over Iceland and the 30-km-high eruption column certainly led to stratospheric injection of gas and ash but little sulphate aerosol was generated. Moreover, pre-eruptive and degassed halogen concentrations (Cl, F) indicate that these volatiles were not efficiently released during the eruption. Besides the local pyroclastic flow (and related lahar) hazard, the impact of the Öræfajökull 1362 eruption was perhaps restricted to widespread ash fall across Eastern Iceland and parts of northern Europe.  相似文献   

12.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

13.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

14.
The Hekla eruption cloud on 26–27 February 2000 was the first volcanic cloud to be continuously and completely monitored advecting above Iceland, using the C-band weather radar near the Keflavík international airport. Real-time radar observations of the onset, advection, and waning of the eruption cloud were studied using time series of PPI (plan-position indicator) radar images, including VMI normal, Echotop, and Cappi level 2 displays. The reflectivity of the entire volcanic cloud ranges from 0 to >60 dBz. The eruption column above the vent is essentially characterised by VMI normal and Cappi level 2 values, >30 dBz, due to the dominant influence of lapilli and ash (tephra) on the overall reflected signal. The cloud generated by the column was advected downwind to the north-northeast. It is characterised by values between 0 and 30 dBz, and the persistence of these reflections likely result from continuing water condensation and freezing on ash particles. Echotop radar images of the eruption onset document a rapid ascent of the plume head with a mean velocity of ~30 to 50 m s–1, before it reached an altitude of ~11–12 km. The evolution of the reflected cloud was studied from the area change in pixels of its highly reflected portions, >30 dBz, and tied to recorded volcanic tremor amplitudes. The synchronous initial variation of both radar and seismic signals documents the abrupt increase in tephra emission and magma discharge rate from 18:20 to 19:00 UTC on 26 February. From 19:00 the >45 dBz and 30–45 dBz portions of the reflected cloud decrease and disappear at about 7 and 10.5 h, respectively, after the eruption began, indicating the end of the decaying explosive phase. The advection and extent of the reflected eruption cloud were compared with eyewitness accounts of tephra fall onset and the measured mass of tephra deposited on the ground during the first 12 h. Differences in the deposit map and volcanic cloud radar map are due to the fact that the greater part of the deposit originates by fallout off the column margins and from the base of the cloud followed by advection of falling particle in lower level winds.Editorial responsibility: P. Mouginis-Mark  相似文献   

15.
Fine ash content of explosive eruptions   总被引:1,自引:0,他引:1  
In explosive eruptions, the mass proportion of ash that is aerodynamically fine enough to cause problems with jet aircraft or human lungs (< 30 to 60 μm in diameter) is in the range of a few percent to more than 50%. The proportions are higher for silicic explosive eruptions, probably because vesicle size in the pre-eruptive magma is smaller than those in mafic magmas. There is good evidence that pyroclastic flows produce high proportions of fine ash by communition and it is likely that this process also occurs inside volcanic conduits and would be most efficient when the magma fragmentation surface is well below the summit crater. Reconstructed total grain size distributions for several recent explosive eruptions indicate that basaltic eruptions have small proportions of very fine ash (~ 1 to 4%) while tephra generated during silicic eruptions contains large proportions (30 to > 50%).  相似文献   

16.
The first of four successive pulses of the 1974 explosive eruption of Fuego volcano, Guatemala, produced a small volume (∼0.02 km3 DRE) basaltic sub-plinian tephra fall and flow deposit. Samples collected within 48 h after deposition over much of the dispersal area (7–80 km from the volcano) have been size analyzed down to 8 φ (4 μm). Tephra along the dispersal axis were all well-sorted (σ φ = 0.25–1.00), and sorting increased whereas thickness and median grain size decreased systematically downwind. Skewness varied from slightly positive near the vent to slightly negative in distal regions and is consistent with decoupling between coarse ejecta falling off the rising eruption column and fine ash falling off the windblown volcanic cloud advecting at the final level of rise. Less dense, vesicular coarse particles form a log normal sub-population when separated from the smaller (Mdφ < 3φ or < 0.125 mm), denser shard and crystal sub-population. A unimodal, relatively coarse (Mdφ = 0.58φ or 0.7 mm σ φ = 1.2) initial grain size population is estimated for the whole (fall and flow) deposit. Only a small part of the fine-grained, thin 1974 Fuego tephra deposit has survived erosion to the present day. The initial October 14 pulse, with an estimated column height of 15 km above sea level, was a primary cause of a detectable perturbation in the northern hemisphere stratospheric aerosol layer in late 1974 to early 1975. Such small, sulfur-rich, explosive eruptions may substantially contribute to the overall stratospheric sulfur budget, yet leave only transient deposits, which have little chance of survival even in the recent geologic record. The fraction of finest particles (Mdφ = 4–8φ or 4–63 μm) in the Fuego tephra makes up a separate but minor size mode in the size distribution of samples around the margin of the deposit. A previously undocumented bimodal–unimodal–bimodal change in grain size distribution across the dispersal axis at 20 km downwind from the vent is best accounted for as the result of fallout dispersal of ash from a higher subplinian column and a lower “co-pf” cloud resulting from pyroclastic flows. In addition, there is a degree of asymmetry in the documented grain-size fallout pattern which is attributed to vertically veering wind direction and changing windspeeds, especially across the tropopause. The distribution of fine particles (<8 μm diameter) in the tephra deposit is asymmetrical, mainly along the N edge, with a small enrichment along the S edge. This pattern has hazard significance.  相似文献   

17.
Temperature structures in the height range of 0–30 km over Pan Chiao (25°N, 121°E) in northern Taiwan were studied for the period 1990–1995 using radiosonde data. The purpose of this study is to see the annual variation of tropopause temperature and height and also to study local temperature perturbations caused by the series of volcanic eruptions at Mount Pinatubo in June 1991. While the annual variation in the tropopause height and temperature is clearly observed, we found a large increase in the temperature at the tropopause and in the lower stratospheric region during the year 1992. The tropopause is warm during the year 1992 and temperature increase at the tropopause is nearly 6°C in January 1992. The annual average temperature at the lower stratosphere during 1992 shows an increase of 2°C from the normal trend. The effects of Pinatubo are in general different in the troposphere and stratosphere.  相似文献   

18.
The 2000 AD eruption of Miyakejima was characterized by a series of phreatomagmatic eruptions from the subsiding caldera. Six major eruptive events occurred, and they can be divided into the first and second periods separated by a 25-day hiatus. The phreatomagmatic eruptions produced a total of ~ 2 × 1010 kg of tephra, which mainly comprised fine-grained volcanic ash. The tephra layers could be divided into six fall units corresponding to the six major eruptive events.  相似文献   

19.
Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy)   总被引:4,自引:2,他引:2  
Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection–diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA re-analysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.  相似文献   

20.
Airborne and ground-based (correlation spectrometer, cascade impactor, and photoelectric counter together with intake filter probes) measurements are described for the volcanic emissions from Popocatépetl volcano (Mexico) from December 23, 1994 to January 28, 1995. Measurements of SO2 restarted 48 h after the eruption onset of December 21, 1994. Maximum sulfur dioxide (4560 t d−1) plus 3.8×104 t d−1 of particulate matter were ejected on December 24, 1994. The maximum rate of ejection occurred coincidentally with the maximum amplitude of harmonic tremor and the maximum number of seismic type B events. Sulfur dioxide emission rates ranged from 1790 to 2070 t d−1 (December 23–24, 1994). Afterwards, sulfur dioxide emission rates clearly indicated a consistent decline. However, frequent gas and ash emission puffs exhibited SO2 fluxes reaching values as high as 3060 t d−1. The emission SO2 baseline for the period of study (February 1994–January 1995) was about 1000 t d−1. Ejection velocity of particulate matter was approximately 270 m s−1 reaching a height of about 2.5 km over the summit. The immediate aerosol dispersion area was estimated at 6.0×104 km2 maximum. The microscopic structure of particles (aerosol and tephra) showed a fragile material, probably coming from weathered crustal layers. X-ray fluorescence and neutron-activation analysis from the impactor samples found the following elements: Si, Al, Ca, S, P, Cl, K, Ni, Fe, Ti, Sc, Cu, Zn, Mn, Sr, Cr, Co, Y, Br, Se, Ga, Rb, Hg and Pb. Morphological analysis shows that ash samples might be from pulverized basaltic rock indicating that the Popocatépetl eruption of December 21, 1994 was at low temperature. The microscopic structure of puff material showed substance aggregates consisted of fragile rock, water and adsorbed SO2. These aggregates were observed within water droplets of approximately 1 mm and even larger. Sulfur transformations in the droplets occurred intensively. Volcanic ash contained 5–6% of sulfur during the first expulsion hours. Elemental relative concentrations with respect to Al show that both Si and S have relative concentrations >1, i.e., 13.73 and 2.17, respectively in agreement with the photoelectric counter and COSPEC measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号