首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We continue the study undertaken in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] where we explored the influence of spin-axis variations of an oblate planet on satellite orbits. Near-equatorial satellites had long been believed to keep up with the oblate primary’s equator in the cause of its spin-axis variations. As demonstrated by Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)], this opinion had stemmed from an inexact interpretation of a correct result by Goldreich [Astron. J. 70, 5–9 (1965)]. Although Goldreich [Astron. J. 70, 5–9 (1965)] mentioned that his result (preservation of the initial inclination, up to small oscillations about the moving equatorial plane) was obtained for non-osculating inclination, his admonition had been persistently ignored for forty years. It was explained in Efroimsky and Goldreich [Astron. Astrophys. 415, 1187–1199 (2004)] that the equator precession influences the osculating inclination of a satellite orbit already in the first order over the perturbation caused by a transition from an inertial to an equatorial coordinate system. It was later shown in Efroimsky [Celest. Mech. Dyn. Astron. 91, 75–108 (2005a)] that the secular part of the inclination is affected only in the second order. This fact, anticipated by Goldreich [Astron. J. 70, 5–9 (1965)], remains valid for a constant rate of the precession. It turns out that non-uniform variations of the planetary spin state generate changes in the osculating elements, that are linear in , where is the planetary equator’s total precession rate that includes the equinoctial precession, nutation, the Chandler wobble, and the polar wander. We work out a formalism which will help us to determine if these factors cause a drift of a satellite orbit away from the evolving planetary equator.By “precession,” in its most general sense, we mean any change of the direction of the spin axis of the planet—from its long-term variations down to nutations down to the Chandler wobble and polar wander.  相似文献   

2.
Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos. We use the term “precession” in its general meaning, which includes any change of the instantaneous spin axis. So generally defined precession embraces the entire spectrum of spin-axis variations—from the polar wander and nutations through the Chandler wobble through the equinoctial precession.  相似文献   

3.
New series of rigid Earth nutations for the angular momemtum axis, the rotation axis and the figure axis, named RDAN97, are computed using the torque approach. Besides the classical J2 terms coming from the Moon and the Sun, we also consider several additional effects: terms coming from J3 and J4 in the case of the Moon, direct and indirect planetary effects, lunar inequality, J2 tilt, planetary‐tilt, effects of the precession and nutations on the nutations, secular variations of the amplitudes, effects due to the triaxiality of the Earth, new additional out‐of‐phase terms coming from second order effect and relativistic effects. Finally, we obtain rigid Earth nutation series of 1529 terms in longitude and 984 terms in obliquity with a truncation level of 0.1 μ (microarcsecond) and 8 significant digits. The value of the dynamical flattening used in this theory is HD=(C-A)/C=0.0032737674 computed from the initial value pa=50′.2877/yr for the precession rate. These new rigid Earth nutation series are then compared with the most recent models (Hartmann et al., 1998; Souchay and Kinoshita, 1996, 1997; Bretagnon et al., 1997, 1998. We also compute a benchmark series (RDNN97) from the numerical ephemerides DE403/LE403 (Standish et al., 1995) in order to test our model. The comparison between our model (RDAN97) and the benchmark series (RDNN97) shows a maximum difference, in the time domain, of 69 μas in longitude and 29 μas in obliquity. In the frequency domain, the maximum differences are 6 μas in longitude and 4 μ as in obliquity which is below the level of precision of the most recent observations (0.2 mas in time domain (temporal resolution of 1 day) and 0.02 mas in frequency domain). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
6.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

7.
Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely in order to constrain the size of the planet's core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765-766]. Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] if we integrate the system with a set of initial conditions that differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury's obliquity will remain quasi-constant, suggesting that one of the important conditions for the success of Peale's experiment is realized. We show that interpretation of data obtained in support of this experiment will require a precise knowledge of the spin-orbit configuration, and we provide estimates for two of the critical parameters, the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration subject to planetary perturbations.  相似文献   

8.
In the present paper the equations of the orbital motion of the major planets and the Moon and the equations of the three–axial rigid Earth’s rotation in Euler parameters are reduced to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth’s rotation) and the evolution of the Earth’s rotation (depending on the planetary and lunar evolution). Hence, the theory of the Earth’s rotation can be presented by means of the series in powers of the evolutionary variables with quasi-periodic coefficients with respect to the planetary–lunar mean longitudes. This form of the Earth’s rotation problem is compatible with the general planetary theory involving the separation of the short–period and long–period variables and avoiding the appearance of the non–physical secular terms.  相似文献   

9.
Bruce G. Bills 《Icarus》2005,175(1):233-247
The obliquity, or angular separation between orbit normal and spin pole, is an important parameter for the geodynamics of most Solar System bodies. Tidal dissipation has driven the obliquities of the Galilean satellites of Jupiter to small, but non-zero values. We present estimates of the free and forced obliquities of these satellites using a simple secular variation model for the orbits, and spin pole precession rate estimates based on gravity field parameters derived from Galileo spacecraft encounters. The free obliquity values are not well constrained by observations, but are presumed to be very small. The forced obliquity variations depend only on the orbital variations and the spin pole precession rate parameters, which are quite well known. These variations are large enough to influence spatial and temporal patterns of tidal dissipation and tidal stress.  相似文献   

10.
B.G. Bills  F. Nimmo 《Icarus》2011,213(2):496-214
We examine models of secular variations in the orbit and spin poles of Ceres and Vesta, the two most massive bodies in the main asteroid belt. If the spin poles are fully damped, then the current values of obliquity, or angular separation between spin and orbit poles, are diagnostic of the moments of inertia and thus indicative of the extent of differentiation of these bodies. Using existing shape models and assuming uniform density, the present obliquity values are predicted to be 12.31° for Ceres and 15.66° for Vesta. Part of this difference is related to differing orbital inclinations; a more centrally condensed internal structure would yield more rapid spin pole precession, and larger obliquity. Time scales for tidal damping are expected to be rather long. However, at least for Vesta, current estimates of the spin pole location are consistent with its obliquity being fully damped. When the degree two gravity coefficients and spin pole orientations are determined by the Dawn spacecraft, it will allow accurate determination of the moments of inertia of these bodies, assuming the obliquities are damped.  相似文献   

11.
In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958–5977 (2003); Astron. Astrophys. 415, 1187–1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75–108 (2005); Ann. New York Acad. Sci. 1065, 346–374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a noninertial frame), a mere amendment of the Hamiltonian makes the equations yield nonosculating Andoyer elements. To make them osculating, extra terms should be added to the equations (but then the equations will no longer be canonical). Calculations in nonosculating variables are mathematically valid, but their physical interpretation is not easy. Nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit. (A nonosculating i may differ much from the real inclination of the orbit, given by the osculating i.) Nonosculating Andoyer elements correctly describe perturbed attitude, but their interconnection with the angular velocity is a nontrivial issue. The Kinoshita–Souchay theory tacitly employs nonosculating Andoyer elements. For this reason, even though the elements are introduced in a precessing frame, they nevertheless return the inertial velocity, not the velocity relative to the precessing frame. To amend the Kinoshita–Souchay theory, we derive the precessing-frame-related directional angles of the angular velocity relative to the precessing frame. The loss of osculation should not necessarily be considered a flaw of the Kinoshita–Souchay theory, because in some situations it is the inertial, not the relative, angular velocity that is measurable [Schreiber, K. U. et al.: J. Geophys. Res. 109, B06405 (2004); Petrov, L.: Astron. Astrophys. 467, 359–369 (2007)]. Under these circumstances, the Kinoshita–Souchay formulae for the angular velocity should be employed (as long as they are rightly identified as the formulae for the inertial angular velocity).  相似文献   

12.
Thanks to the recent data obtained from the NEAR space probe, we calculate in this paper, with a precision never reached so far for an asteroid, the precession and the nutation of Eros 433. In a preliminary step, we show that Eros obliquity has a remarkable value of 89.0° which tends to align its figure axis along the orbital plane. This very specific obliquity has some consequences on the motion of the axis of figure: one is the very small amplitude of the precession in longitude, for which we get the value . Moreover, we calculate Eros nutation for the figure axis due to the Sun, after developing the perturbing potential at the 4th order of the eccentricity. We show that the figure axis undergoes very large oscillations in the direction perpendicular to Eros orbital plane, due to the nutation in obliquity. Peak to peak, these oscillations reach 55″, which is far larger than the amplitudes of the nutations of the Earth due to the Sun (of the order of 2″). Moreover, we give the analytical developments of Δψ and Δε, both for the axis of angular momentum, and the axis of figure.  相似文献   

13.
The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381–393]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects.The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth.Tides also tend to reduce the planet’s obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a “Cassini state”, where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ∼90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism.This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet’s surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or night disappear at β=90°. The insolation regime passes through several more transitions as β continues to increase toward 180°, but the surface distribution of insolation remains non-uniform in both latitude and longitude.Thus obliquity, like eccentricity, can protect certain areas of the planet from the worst extremes of temperature and solar radiation, and can improve the planet’s habitability. These results also have implications for the direct detectability of extrasolar planets, and for the interpretation of their thermal emissions.  相似文献   

15.
In this paper, we examine the orbital signal in Earth's climate with a coupled model of intermediate complexity (ECBilt). The orbital influence on climate is studied by isolating the obliquity and precession signal in several time-slice experiments. Focus is on monsoonal systems with emphasis on the African summer monsoon. The model shows that both the precession and the obliquity signal in the African summer monsoon consists of an intensified precipitation maximum and further northward extension during minimum precession and maximum obliquity than during maximum precession and minimum obliquity. In contrast to obliquity, precession also influences the seasonal timing of the occurrence of the maximum precipitation. The response of the African monsoon to orbital-induced insolation forcing can be divided into a response to insolation forcing at high northern latitudes and a response to insolation forcing at low latitudes, whereby the former dominates. The results also indicate that the amplitude of the precipitation response to obliquity depends on precession, while the precipitation response to precession is independent of obliquity. Our model experiments provide an explanation for the precession and obliquity signals in sedimentary records of the Mediterranean (e.g., Lourens et al. [Paleoceanography 11 (1996) 391, Nature 409 (2001) 1029]), through monsoon-induced variations in Nile river outflow and northern Africa aridity.  相似文献   

16.
Mercury is observed in a stable Cassini’s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models.  相似文献   

17.
A Hamiltonian model is constructed for the spin axis of a planet perturbed by a nearby planet with both planets in orbit about a star. We expand the planet–planet gravitational potential perturbation to first order in orbital inclinations and eccentricities, finding terms describing spin resonances involving the spin precession rate and the two planetary mean motions. Convergent planetary migration allows the spinning planet to be captured into spin resonance. With initial obliquity near zero, the spin resonance can lift the planet’s obliquity to near 90\(^\circ \) or 180\(^\circ \) depending upon whether the spin resonance is first or zeroth order in inclination. Past capture of Uranus into such a spin resonance could give an alternative non-collisional scenario accounting for Uranus’s high obliquity. However, we find that the time spent in spin resonance must be so long that this scenario cannot be responsible for Uranus’s high obliquity. Our model can be used to study spin resonance in satellite systems. Our Hamiltonian model explains how Styx and Nix can be tilted to high obliquity via outward migration of Charon, a phenomenon previously seen in numerical simulations.  相似文献   

18.
The IAU Working Group on Precession and the Equinox looked at several solutions for replacing the precession part of the IAU 2000A precession–nutation model, which is not consistent with dynamical theory. These comparisons show that the (Capitaine et al., Astron. Astrophys., 412, 2003a) precession theory, P03, is both consistent with dynamical theory and the solution most compatible with the IAU 2000A nutation model. Thus, the working group recommends the adoption of the P03 precession theory for use with the IAU 2000A nutation. The two greatest sources of uncertainty in the precession theory are the rate of change of the Earth’s dynamical flattening, ΔJ2, and the precession rates (i.e. the constants of integration used in deriving the precession). The combined uncertainties limit the accuracy in the precession theory to approximately 2 mas cent−2. Given that there are difficulties with the traditional angles used to parameterize the precession, zA, ζA, and θA, the working group has decided that the choice of parameters should be left to the user. We provide a consistent set of parameters that may be used with either the traditional rotation matrix, or those rotation matrices described in (Capitaine et al., Astron. Astrophys., 412, 2003a) and (Fukushima Astron. J., 126, 2003). We recommend that the ecliptic pole be explicitly defined by the mean orbital angular momentum vector of the Earth–Moon barycenter in the Barycentric Celestial Reference System (BCRS), and explicitly state that this definition is being used to avoid confusion with previous definitions of the ecliptic. Finally, we recommend that the terms precession of the equator and precession of the ecliptic replace the terms lunisolar precession and planetary precession, respectively.  相似文献   

19.
Exploring the global dynamics of a planetary system involves computing integrations for an entire subset of its parameter space. This becomes time-consuming in presence of a planet close to the central star, and in practice this planet will be very often omitted. We derive for this problem an averaged Hamiltonian and the associated equations of motion that allow us to include the average interaction of the fast planet. We demonstrate the application of these equations in the case of the μ Arae system where the ratio of the two fastest periods exceeds 30. In this case, the effect of the inner planet is limited because the planet’s mass is one order of magnitude below the other planetary masses. When the inner planet is massive, considering its averaged interaction with the rest of the system becomes even more crucial.  相似文献   

20.
Critical analysis of theories of the long-term variations of the ecliptical elements of the Earth leads to the following conclusions, regarding the influence of different terms on the accuracy of the expansions used:
  1. further improvement in planetary masses will not have significant influence:
  2. for the (e, π) system, terms depending upon the second order as to the disturbing masses are more important than ones coming from the third degree with respect to the planetary eccentricities and inclinations;
  3. for the (i, Ω) system, the latter terms have highly significant influence, whereas additional terms in masses are negligible. The same conclusion can be drawn for (ε,Ψ g ). Using these results, a new solution for the long-term variations of the Earth's orbital elements is obtained. The results fore, π,i, Ω include terms depending upon the second power as to the disturbing masses and to the third degree with respect to the planetarye's andi's. For the obliquity ε and the annual general precession in longitudeΨ g , a Laplace series is proposed where amplitudes, mean rates and phases are computed from those of the (i, Ω) system.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号