首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Maia  D.  Pick  M.  Hawkins  S.E.  Fomichev  V.V.  Jiřička  K. 《Solar physics》2001,204(1-2):197-212
On 14 July 2000, the LASCO coronagraphs showed a very fast halo coronal mass ejection in association with the radio bursts seen shortly after 10:00 UT. Radio imaging observations by the Nançay radioheliograph (NRH) of these bursts showed a very complex event that can be regarded as global: the sources encompassed all the visible range in longitude and a huge span in latitude. Another interesting feature of the radio event is its recurrent nature: after the most intense phase shortly after 10:00 UT, two other strong outbursts are detected, one at about 12:50 UT and another at about 13:48 UT. All of these sub-events showed similar development and likely evidence for CMEs. The launch of a CME in association with the 14:00 UT sub-event is inferred from WIND/WAVES, with interplanetary type II signatures in the hectometric wavelength range at that time. These later events were not detected by LASCO due to energetic particles hitting the CCD. During the Bastille Day event, energetic particle observations measured in situ by ACE/EPAM are dominated by energetic electrons. Changes in anisotropy and energy spectrum of the ~38–350 keV electrons suggest a good correlation with the coronal radio observations. In addition to the three main radio events and particle observations, the NRH data reveal moving features in the southern hemisphere. These moving features, located at about 45 deg south and with an angular extent of about 45 deg, are illuminated by non-thermal electrons and are seen at distances up to 2.5 solar radii from the Sun center. More generally, we interpret the global and recurrent coronal activity, revealed by the radio data, as responsible for populating the interplanetary medium with energetic electrons.  相似文献   

2.
Kocharov  L.  Torsti  J. 《Solar physics》2002,207(1):149-157
We summarize ERNE/SOHO observations of solar energetic particle events associated with impulsive soft X-ray flares and LASCO coronal mass ejections (CMEs). The new observational data support an idea that the >10 MeV proton acceleration may be initiated at different coronal sources, operating in the flaring active region and on the global coronal scale, in concert with CME development. However, the particle acceleration continues beyond the coronal scales and may culminate at the interplanetary CME well after the flare. We emphasize the importance of CME liftoff/aftermath processes in the solar corona and the possible role of seed particle re-acceleration, which may explain the existence of hybrid solar energetic particle events.  相似文献   

3.
The aim of this paper is studying the relation between the coronal mass ejections (CMEs), and their associated solar flares. I used the CMEs data (obtained from CME catalogue) which observed by SOHO/LASCO, during the Solar Cycle 23rd (1996–2006), during this period I selected 12,433 CME records. Also I used the X-ray flares data which provided geostationary operational environmental satellite (GOES), during the same interval in the 1–8 Å GOES channel, the recorded flare events are 22,688. I filtered these CMEs and solar flare events to select 529 CME-Flare events. I found that there is a moderate relation between the solar flare fluxes and their associated CME energies, where R = 58 %. In addition I found that 61 % of the CME-Flare associated events ejected from the solar surface after the occurrence of the associated flare. Furthermore I found that the CME-Flare relation improved during the period of high solar activity. Finally, I examined the CME association rate as a function of flare longitude and I found that the CME association rate of the total 529 selected CME-Flare events are mostly disk-Flare events.  相似文献   

4.
We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997– December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.  相似文献   

5.
We have analyzed a set of 25 interacting events which are associated with the DH type II bursts. These events are selected from the Coronal Mass Ejections (CMEs) observed during the period 1997–2010 in SOHO/LASCO and DH type IIs observed in Wind/WAVES. Their pre and primary CMEs from nearby active regions are identified using SOHO/LASCO and EIT images and their height–time diagrams. Their interacting time and height are obtained, and their associated activities, such as, flares and Solar Energetic Particles (>10 pfu) are also investigated. Results from the analysis are: primary CMEs are much faster than the pre-CMEs, their X-ray flares are also stronger (X- and M-class) compared to the flares (C- and M-class) of pre-CMEs. Most of the events (22/25) occurred during the period 2000–2006. From the observed width and speed of pre and primary CMEs, it is found that the pre-CMEs are found to be less energetic than the primary CMEs. While the primary CMEs are tracked up to the end of LASCO field of view (30 Rs), most of the pre-CMEs can be tracked up to <26 Rs. The SEP intensity is found to be related with the integrated flux of X-ray flares associated with the primary CMEs for nine events originating from the western region.  相似文献   

6.
We present the study of 20 solar flares observed by “Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented. We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.  相似文献   

7.
Flux measurements of solar energetic particles (SEPs) in the ERNE instrument onboard SOHO indicate that the abundance of 4He-nuclei compared to protons in the energy range up to 100 MeV nucl–1 was exceptionally high during the particle events on 27 May 1998 and 28 December 1999. The 4He/p ratio stayed between 0.15–0.50 for more than ten hours. There was also a prolonged enhancement in helium-3, 3He/4H 1%. Observations of EIT and LASCO on board SOHO confirm that the originators of both SEP events were western eruptions, flares and coronal mass ejections (CMEs). The onset of the SEP release took place close to the maximum of flares which were probably triggered by the rising CMEs. The observations suggest that the SEP events were started with the flare-(pre)accelerated particles, but impact of the CME-associated shocks might explain the continuation and modification of the helium and proton fluxes well after the flare production. These observations support the idea that the helium enhancements in the CME-associated events reflect the availability of seed particles that originate previously in flares.  相似文献   

8.
The purpose of the present study is to investigate the association of solar energetic particle (SEP) events with halo coronal mass ejections (CME) and with their associated solar flares during the period 1997–2014 (solar cycle 23 and 24). We have found that halo CMEs are more effective in producing SEP events. The occurrence probability and peak fluxes of SEPs strongly depend on the halo CMEs speed (V) as follows. The highest associations, 56% for occurrence probability and 90% for average peak fluxes, are found for the halo CMEs with V> 1400 km s−1 but the lowest associations, 20% for occurrence probability and 5% for average peak fluxes, are found for halo CMEs with speed range 600 ≤ V ≤ 1000 km s−1. We have also examined the relationship between SEP events and halo CME associated solar flares and found that 73% of events are associated with western solar flares while only 27% are with eastern solar flares. For longitudinal study, 0–20° belt is found to be more dominant for the SEP events. The association of SEP events with latitudinal solar flares is also examined in the study. 51% of events are associated with those halo CMEs associated solar flares which occur in the southern hemisphere of the Sun while 49% are with those solar flares that occur in the northern hemisphere of the Sun. Also, 10–20° latitudinal belt is found to be likely associated with the SEP events. Further, 45% of SEP events are associated with M-class solar flares while 44% and 11% are with X and C-class respectively. Maximum number of SEP events are found for the fast halo CME associated X- class solar flares (68%) than M and C- class solar flares.  相似文献   

9.
We review recent progress on our understanding of radio emission from solar flares and coronal mass ejections (CMEs) with emphasis on those aspects of the subject that help us address questions about energy release and its properties, the configuration of flare?–?CME source regions, coronal shocks, particle acceleration and transport, and the origin of solar energetic particle (SEP) events. Radio emission from electron beams can provide information about the electron acceleration process, the location of injection of electrons in the corona, and the properties of the ambient coronal structures. Mildly relativistic electrons gyrating in the magnetic fields of flaring loops produce radio emission via the gyrosynchrotron mechanism, which provides constraints on the magnetic field and the properties of energetic electrons. CME detection at radio wavelengths tracks the eruption from its early phase and reveals the participation of a multitude of loops of widely differing scale. Both flares and CMEs can ignite shock waves and radio observations offer the most robust tool to study them. The incorporation of radio data into the study of SEP events reveals that a clear-cut distinction between flare-related and CME-related SEP events is difficult to establish.  相似文献   

10.
We study the association of solar flares with coronal mass ejections (CMEs) during the deep, extended solar minimum of 2007?–?2009, using extreme-ultraviolet (EUV) and white-light (coronagraph) images from the Solar Terrestrial Relations Observatory (STEREO). Although all of the fast (v>900 km?s?1), wide (θ>100°) CMEs are associated with a flare that is at least identified in GOES soft X-ray light curves, a majority of flares with relatively high X-ray intensity for the deep solar minimum (e.g. ?1×10?6 W?m?2 or C1) are not associated with CMEs. Intense flares tend to occur in active regions with a strong and complex photospheric magnetic field, but the active regions that produce CME-associated flares tend to be small, including those that have no sunspots and therefore no NOAA active-region numbers. Other factors on scales similar to and larger than active regions seem to exist that contribute to the association of flares with CMEs. We find the possible low coronal signatures of CMEs, namely eruptions, dimmings, EUV waves, and Type III bursts, in 91 %, 74 %, 57 %, and 74 %, respectively, of the 35 flares that we associate with CMEs. None of these observables can fully replace direct observations of CMEs by coronagraphs.  相似文献   

11.
We probe the spectral hardening of solar flares emission in view of associated solar proton events (SEPs) at earth and coronal mass ejection (CME) acceleration as a consequence. In this investigation we undertake 60 SEPs of the Solar Cycle 23 along with associated Solar Flares and CMEs. We employ the X-ray emission in Solar flares observed by Reuven Ramaty Higly Energy Solar Spectroscopic Imager (RHESSI) in order to estimate flare plasma parameters. Further, we employ the observations from Geo-stationary Operational Environmental Satellites (GOES) and Large Angle and Spectrometric Coronagraph (LASCO), for SEPs and CMEs parameter estimation respectively. We report a good association of soft-hard-harder (SHH) spectral behavior of Flares with occurrence of Solar Proton Events for 16 Events (observed by RHESSI associated with protons). In addition, we have found a good correlation (R=0.71) in SEPs spectral hardening and CME velocity. We conclude that the Protons as well as CMEs gets accelerated at the Flare site and travel all the way in interplanetary space and then by re-acceleration in interplanetary space CMEs produce Geomagnetic Storms in geospace. This seems to be a statistically significant mechanism of the SEPs and initial CME acceleration in addition to the standard scenario of SEP acceleration at the shock front of CMEs.  相似文献   

12.
We report on the detailed analysis of a set of 38 multiple type II radio bursts observed by Culgoora radio spectrograph from January 1997 to July 2003. These events were selected on the basis of the following criteria: (i) more than one type II were reported within 30 min interval, (ii) both fundamental and harmonic were identified for each of them. The X-ray flares and CMEs associated with these events are identified using GOES, Yohkoh SXT, SOHO/EIT, and SOHO/LASCO data. From the analysis of these events, the following physical characteristics are obtained: (i) In many cases, two type IIs with fundamental and harmonic were reported, and the time interval between the two type IIs is within 15 min; (ii) The mean values of starting frequency, drift rate, and shock speed of the first type II are significantly higher than those of the second type II; (iii) More than 90% of the events are associated with both X-ray flares and CMEs; (iv) Nearly 75% of the flares are stronger than M1 X-ray class and 50% of CMEs have their widths larger than 200^∘ or they are halo CMEs; (v) While most of the first type IIs started within the flare impulsive phase, 22 out of 38 second type IIs started after the flare impulsive phase. Weak correlations are found between the starting and ending frequencies of these type II events. On the other hand, there was no correlation between two shock speeds between the first and the second type II. Since most of the events are associated with both the flares and CMEs, and there are no events which are only associated with multiple impulsive flares or multiple mass ejections, we suggest that the flares and CMEs (front or flank) both be sources of multiple type IIs. Other possibilities on the origin of multiple type IIs are also discussed.  相似文献   

13.
In an effort to examine the relationship between flare flux and corresponding CME mass, we temporally and spatially correlate all X-ray flares and CMEs in the LASCO and GOES archives from 1996 to 2006. We cross-reference 6733 CMEs having well-measured masses against 12 050 X-ray flares having position information as determined from their optical counterparts. For a given flare, we search in time for CMEs which occur 10 – 80 minutes afterward, and we further require the flare and CME to occur within ± 45° in position angle on the solar disk. There are 826 CME/flare pairs which fit these criteria. Comparing the flare fluxes with CME masses of these paired events, we find CME mass increases with flare flux, following an approximately log-linear, broken relationship: in the limit of lower flare fluxes, log (CME mass)∝0.68×log (flare flux), and in the limit of higher flare fluxes, log (CME mass)∝0.33×log (flare flux). We show that this broken power-law, and in particular the flatter slope at higher flare fluxes, may be due to an observational bias against CMEs associated with the most energetic flares: halo CMEs. Correcting for this bias yields a single power-law relationship of the form log (CME mass)∝0.70×log (flare flux). This function describes the relationship between CME mass and flare flux over at least 3 dex in flare flux, from ≈ 10−7 – 10−4 W m−2.  相似文献   

14.
张军  汪景 《天文学进展》2001,19(2):146-146
主要介绍晕状日冕物质抛射(halo CMEs)的产生机制,包括向量磁场演化是怎样触发halo CMEa的:halo CME与耀斑,暗条活动的相互关系怎样,是否有规律可循,暗条爆发,耀斑等活动现象是如何相互联系的,halo CME事件是由一个活动区域或一个活动事件驱动物,还是多个活动区或多个活动事件相互作用的结果,给出两个halo CME的日面起源的观测例证,提出相反极笥的磁场对消是CME日面源区磁场演化的主要特征。  相似文献   

15.
We have analyzed the data for more than 12900 coronal mass ejections (CMEs) which were obtained by SOHO/LASCO during the period of 1996-2007. The online CME catalogue contains all major CMEs detected by LASCO C2 and C3 coronagraphs. Basically we determine the CME speeds from the linear and quadratic fits to the height-time measurements. It is found that linear (constant speed) fit is preferable for 90% of the CMEs. The distribution of speeds of CMEs in solar cycle 23 is presented along with those obtained by others. As expected, the speeds decrease in the decay phase of the cycle 23. There is an unusual drop in speed in the year 2001 and an abnormal increase in speed in the year 2003 due to the high concentration of CMEs, X-class soft X-ray flares, solar energetic particle (SEP) events and interplanetary shocks observed during October-November period called Halloween events.  相似文献   

16.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   

17.
18.
Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations from 1996 to 2003 are used in this study. It is shown that the observed CMEs have a similar power-law behavior to the flares, with an almost identical power-law index. This strongly supports the viewpoint that solar flares and CMEs are different manifestations of the same physical process. We have also investigated separately the WTDs of fast-type and slow-type CMEs and found that their indices are identical, which imply that both types of CME may originate from the same physical mechanism.  相似文献   

19.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

20.
Kosovichev  A.G.  Zharkova  V.V. 《Solar physics》1999,190(1-2):459-466
Using high-cadence magnetograms from the SOHO/MDI we have investigated variations of the photospheric magnetic field during solar flares and CMEs. In the case of a strong X-class flare of May 2, 1998, we have detected variations of magnetic field in a form of a rapidly propagating magnetic wave. During the impulsive phase of the flare we have observed a sudden decrease of the magnetic energy in the flare region. This provides direct evidence of magnetic energy release in solar flares. We discuss the physics of the magnetic field variations, and their relations to the Moreton Hα waves and the coronal waves observed by the EIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号