首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new assessment system for macrophytes and phytobenthos in German lakes according to the Water Framework Directive of the European Community is described. Based on biological, chemical and hydromorphological data from about 100 lake sites covering the main ecoregions, hydromorphological lake types and degradation forms, biocoenotic types could be defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into two components: macrophytes and benthic diatoms. For macrophytes 4 and for benthic diatoms 4 lake types were identified. The benthic vegetation at reference conditions is described and degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For a few of the described lake types further investigations are necessary before a classification can be developed.  相似文献   

2.
The New EC Framework Water Directive: Assessment of the Chemical and Ecological Status of Surface Waters The main objective of the draft EC Framework Water Directive is the good quality of all surface waters. The directive provides for an assessment of the chemical status of surface waters (EU‐wide valid environmental quality standards for approximately 30 priority substances) and a five‐stage ecological classification of waters, comprising the stages high, good, moderate, poor, and bad. The starting point for the assessment are the reference conditions, which are defined as corresponding to high water quality and characterising a water status with no significant anthropogenic impact. The reference sites in the various water body types are to be selected using hydromorphological and physico‐chemical parameters and subsequently characterised by means of biological parameters. For surface waters, three groups of characteristics are provided for, namely: 1. with priority the biology – in the case of surface waters – with the four elements phytoplankton, macrophytes/phytobenthos, benthic invertebrate fauna, and fish fauna; 2. supporting the hydromorphology, e.g. flowing waters with the three elements hydrological regime, river continuity, and morphological conditions and 3. supporting the physico‐chemical conditions with the three elements general conditions, specific synthetic pollutants, and specific non synthetic pollutants (other than the priority substances of the chemical status).  相似文献   

3.
We analyzed species composition and abundance of macrophytes, diatoms and non-diatom benthic algae, water chemistry and habitat structure of 24 river sites in Poland, in order to better understand which parameters structure macrophyte and benthic algae communities. Community patterns for macrophytes and diatoms are most closely related, while macrophytes and non-diatom benthic algae have the weakest relationship. Environmental parameters best explaining community patterns are channel substrate parameters for non-diatom benthic algae, and a combination of channel substrate and river bank characteristics for submerged macrophytes, emergent macrophytes and diatoms. Among the organism groups investigated, the diatom community pattern is best correlated to the environmental data similarity matrix. We hypothesize that the results can be explained by the shorter generation time of diatoms compared to macrophytes, and by a higher dispersal rate of diatoms compared to macrophytes and non-diatom benthic algae. This has several practical consequences for bioindication: (1) Diatoms are usually the organism group most closely following environmental parameters, for both increasing and decreasing impact. (2) Since the biotic indices developed for the Water Framework Directive are meant to primarily indicate ecological changes, not water chemistry, the nature of diatoms to closely reflect water chemistry is not necessarily advantageous. (3) The applicability of macrophyte and probably also non-diatom benthic algae indices is more locally restricted, while diatom indices are applicable to greater areas. (4) In ecosystems which are subject to changing environmental conditions, differences in biotic indices between macrophytes, diatoms and non-diatom benthic algae are to be expected. These differences could provide information relating to ecosystem stability. (5) In stable ecosystems, analyzing one of the three organism groups “diatoms”, “non-diatom benthic algae” and “macrophytes” will be sufficient to characterize the quality element “macrophytes and phytobenthos”, as required by the Water Framework Directive. However, in ecosystems subject to increasing pressure, macrophytes likely will have a tendency to indicate “too good”, while in ecosystems subject to decreasing pressure, diatoms will have a tendency to indicate “too good”.  相似文献   

4.
Boulion  V. V. 《Water Resources》2004,31(1):92-102
Regularities in the development of macrophytes, epiphytes, and phytobenthos, common for different types of water bodies, are first described. The dependence of their production on the morphometry of lakes, total phosphorus content, water transparency, and latitude is examined. The total phosphorus content is shown to affect primarily the development of phytoplankton and to have only indirect effect on the development of macrophytes, epiphytes, and phytobenthos. A mass-balance model for prediction of the biomass and annual production of phytoplankton, macrophytes, epiphytes, and phytobenthos is suggested.  相似文献   

5.
Cross-taxon responses to elevated nutrients in European streams and lakes   总被引:1,自引:0,他引:1  
Few studies have compared the response of different taxonomic groups to environmental stress across aquatic ecosystems. We regressed assemblage structure of fish, invertebrates, macrophytes, phytoplankton and benthic diatoms to total phosphorus concentration, after removing the effect of ecosystem size (stream order, lake surface area), using data from 66 streams and 45 lakes across Europe. In streams, the structure of benthic diatom assemblages, measured by nonmetric multidimensional scaling, showed the strongest correlation to elevated nutrient concentrations (adj. R2 = 0.495), followed by benthic invertebrates (0.376), fish (0.181) and macrophytes (0.153). For lakes, the patterns were less clear: fish (0.155), macrophytes (0.146) and phytoplankton (0.132). Cross-system comparison showed that stream assemblages were responding more strongly to nutrient concentrations than lake assemblages. Moreover, our results lend some support to the conjecture that response signatures are related to trophic level, with primary producers (benthic diatoms) responding more strongly than consumers (invertebrates, fish). Knowledge of differences in responses among taxonomic groups and between habitats to disturbance can be used to design more cost-effective monitoring programs.  相似文献   

6.
Submerged macrophyte vegetation has been mapped in four calcareous groundwater-fed streams in Bavaria (southern Germany) in order to compare and assess two different methods of river bioindication. The first one, the trophic index of macrophytes (TIM), is a tool to assess the trophic status of running waters. In contrast, the reference index (RI) is an ecological index which evaluates the difference between a reference community and the actual submerged vegetation, depending on the river type, as required by the Water Framework Directive. Water nutrient concentrations were measured once at selected sites in all water courses.The TIM reflects water phosphorus concentrations, accounting also for nutrients enrichment in the sediment, and is not influenced by shading, depth, substrate and flow velocity of the water course. The TIM is very sensitive to small variations in P concentration when the P level is low, while the index tends to a maximum as soluble reactive phosphorus (SRP) and total phosphorus (Ptot) exceed a certain value.The RI indicates river ecological status which is not only influenced by trophic status but by every factor leading to a deviation of the actual macrophyte community from the reference community. In the investigated rivers the RI indicated reduced flow velocity caused by milldams and shading by riparian vegetation, in addition to trophic status.In rivers that are at the boundary between two different river types, classification of river type can play a crucial role for river status assessment. Incorrect classification of river type can lead to both, a “too good” and “too bad” assessment.  相似文献   

7.
To test if phytobenthic algae provide additional important information to macrophytes and phytoplankton for lake monitoring, we sampled two large lakes in Norway. In each lake, we analyzed water chemistry and phytoplankton above the deepest site, recorded macrophytes and non-diatom phytobenthic algae at 20 sites around the shoreline and estimated site-specific nutrient input from land cover. Since no ready-to-use phytobenthos index exists for lakes in Norway, we tested the PIT index developed for rivers, commonly perceived signs of disturbance such as high algal cover, and taxon richness as well as similarity patterns. Both lakes were nutrient poor, but had potential local nutrient inputs (villages, agriculture). In neither of the lakes did phytobenthos indicate a worse overall ecological status than macrophytes and phytoplankton. Our data therefore, did not suggest that it would be useful to add phytobenthos into surveillance monitoring of lakes in Norway. There was a loose correlation between macrophyte and phytobenthic site-specific taxon richness and similarities. This means that macrophytes and phytobenthos do indeed give partly redundant information. High algal cover was found at sites with both high and low phosphorus input. Using algal cover as indicator of site-specific nutrient input is therefore overly simplistic. Urban and cultivated areas were associated with a more eutrophic PIT. This indicates that the PIT, despite being developed for lotic waters, may be used to detect site specific nutrient input in lakes.  相似文献   

8.
The process of selecting invertebrate-based candidate metrics for the German stream assessment system is described. The aim was to identify metrics indicating degradation types other than organic pollution and acidification (“general degradation”). For 18 out of 24 German stream types a data base of roughly 2,000 benthic invertebrate samples was generated; for each sample 79 metrics were calculated. Data on land use in the catchment were compiled for all sampling sites, together with data on hydromorphology for many sampling sites. Hydromorphological and land use parameters, which describe a clear gradient in the data sets were identified by Non-metric Multidimensional Scaling (NMS). Correlation analyses between land use/hydromorphological parameters and metric results were calculated separately for the individual stream types. Among those metrics best indicating catchment- and hydromorphological degradation in the majority of stream types are: proportion of Ephemeroptera, Plecoptera and Trichoptera; proportion of Plecoptera (mainly suited for mountain streams); number of Plecoptera taxa; proportion of xenosaprobic taxa; proportion of epirhithral preferring taxa. Differences of metric correlations between stream types and between degradation types are discussed, leading to a list of candidate metrics for assessing German streams.  相似文献   

9.
10.
Excessive mobilization and delivery of fine sediments to water bodies has detrimental impacts on those biotic elements used for waterbody status classification, including macroinvertebrates, fish and macrophytes. The relationship between fine sediment and diatoms is a reciprocal one, with diatoms influencing the production and retention of fine sediments, as well as being impacted by fine sediment derived from the catchment. Diatoms can increase the retention of fine sediments in benthic environments as a result of various mechanisms, including shear stress modification, surface adhesion and bed clogging. Enhanced retention of fines can have important implications for the transfer and fate of sediment‐associated nutrients and contaminants. Excessive fine sediment loadings impact diatom assemblages via shading, burial and scouring. Indirect impacts of increased fine sediment stress can result from changes in habitat availability, herbivory or predator changes, which cascade down the food chain. Indices based on the relative abundance of motile species have been proposed for using diatoms to assess waterbody status. However, disentangling the potential confounding impacts of alternative environmental stressors on these simplistic indices remains a significant challenge. Coupling sediment pressure models, capable of predicting the potential impact of mitigation, with meaningful diatom‐based indices, remains a challenge for catchment planning for sediment abatement and the attainment of improved, or protection of, ecological status. Existing targets for sediment management in river catchments are largely based on relationships between sediment stress and impacts on fish, but these thresholds have been widely criticized. There remains a need to develop generic modelling toolkits coupling sediment stress and impacts on a range of biological quality elements to support a weight‐of‐evidence approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
We classified homogenous river types across Europe and searched for fish metrics qualified to show responses to specific pressures (hydromorphological pressures or water quality pressures) vs. multiple pressures in these river types. We analysed fish taxa lists from 3105 sites in 16 ecoregions and 14 countries. Sites were pre-classified for 15 selected pressures to separate unimpacted from impacted sites. Hierarchical cluster analysis was used to split unimpacted sites into four homogenous river types based on species composition and geographical location. Classification trees were employed to predict associated river types for impacted sites with four environmental variables. We defined a set of 129 candidate fish metrics to select the best reacting metrics for each river type. The candidate metrics represented tolerances/intolerances of species associated with six metric types: habitat, migration, water quality sensitivity, reproduction, trophic level and biodiversity. The results showed that 17 uncorrelated metrics reacted to pressures in the four river types. Metrics responded specifically to water quality pressures and hydromorphological pressures in three river types and to multiple pressures in all river types. Four metrics associated with water quality sensitivity showed a significant reaction in up to three river types, whereas 13 metrics were specific to individual river types. Our results contribute to the better understanding of fish assemblage response to human pressures at a pan-European scale. The results are especially important for European river management and restoration, as it is necessary to uncover underlying processes and effects of human pressures on aquatic communities.  相似文献   

12.
We present the process of developing a macrophyte based index (River Macrophyte Index – RMI) for assessing river ecological status, that would be applicable for rivers with moderate to high water alkalinity, flowing over low slope terrain. A reference value and boundary values were determined for five ecological classes. The relation between the developed index and two existing indices, the Reference Index (RI) and the Trophic Index of Macrophytes (TIM), and selected environmental variables was established. The RMI is based on species composition and abundance from 208 sampling sites being in reference or good hydromorphological conditions and differing in the catchment land use. The percentage of natural areas in the sub-catchment was used for classifying macrophyte taxa into 5 ecological groups. 65 plant taxa, of which 47 were identified as indicator taxa, were included in the analysis. To assess the ecological status of a river site, the presence of at least 3 indicator taxa is necessary, otherwise the assessment is considered inconclusive. RMI is expected to indicate multiple pressures on the river, including trophic level. The developed index and RI and TIM indices differed in relation to slope, distance to source and catchment size.  相似文献   

13.
Aquatic macrophytes can severely retard flow rates in the river channels that they occupy. Consequently, there is a need to improve our ability to model vegetation resistance, to aid flood prediction and allow for better-informed channel management. An empirical model is developed to calculate flow resistance (Manning’s resistance coefficient) of channels containing the submergent macrophyte Ranunculus (water-crowfoot). Blockage factors (the proportion of a cross-section blocked by vegetation) were determined for up to nine cross-sections at each of 35 river sites. These were used to create blockage-factor percentiles, which were regressed against vegetation resistance. An exponential best-fit relation involving the 69th blockage-factor percentile gave the best results. A parameter relating the length of the vegetated/solid boundary in contact with the open channel to the length of the conventionally-defined wetted perimeter improved the model fit by acting as a pseudo-measure of the turbulent-energy losses generated within the unvegetated stream by the macrophytes. The model was tested on three additional sites containing different macrophyte species and much higher vegetation blockages, and was found to work well.  相似文献   

14.
以三峡库区重要支流汝溪河为研究区域,分析汝溪河中底栖硅藻功能群季节演替特征,并探讨影响其季节演替的驱动因子.结果表明,3个水情期(平水期、枯水期及丰水期)共鉴定出底栖硅藻168种,隶属8科27属,共划分为B、C、D、L_O、MP、P、X3和T_B8个功能群,其中MP在3个水情期中均占主导地位.通过冗余分析(RDA)发现,汝溪河中底栖硅藻功能群季节演替的主要驱动环境因子为亚硝酸盐浓度、电导率、溶解性磷酸盐浓度、高锰酸钾指数和温度.  相似文献   

15.
In the present study, the water quality of Kalamas river (NW Greece) was evaluated using physicochemical and hydromorphological parameters and benthic macroinvertebrates. Statistical analyses (Cluster and FUZZY analyses) were performed and two biotic scores (BMWP' and HS) were used in order to classify the sites according to water quality. Kalamas river appeared to have excellent tomoderate water quality at all sampling sites except one (close to the delta area) which was ”fairly or significantly polluted”. During the low flow season water quality appeared poorer than during the high flow season. The ecological parameters (hydromorphological, chemical, and biological) used for this integrated approach are the ones proposed by the New Water Directive 2000/60 EC for an efficient surveying monitoring of running waters.  相似文献   

16.
In the twentieth century Polish Carpathian rivers were considerably modified by channelization and gravel mining, with significant detrimental effects to their ecological integrity, vertical stability of the streambeds and flood hazard to downstream river reaches. Restoration of the rivers is thus necessary to improve their ecological status and re‐establish geomorphic dynamic equilibrium conditions. Various approaches to defining hydromorphological reference conditions, proposed to date in river restoration literature, have serious deficiencies. In particular, environmental changes that took place in the catchments of Carpathian rivers during the twentieth century invalidate the historical state of the rivers as reference for their restoration. This is illustrated by a change from bar‐braided to island‐braided channel pattern that occurred in the past century in unmanaged sections of the Czarny Dunajec in response to a reduction in flow and sediment dynamics of the river. We indicate that reference conditions should be defined as those which exist or would exist under present environmental conditions in the catchment but without human influence on the channel, riparian zone and floodplain of the river which is to be restored. This assumption was tested through the evaluation of hydromorphological river quality of the Czarny Dunajec according to the European Standard EN‐14614. The evaluation confirmed a high‐status hydromorphological quality in an unmanaged channel section, which can thus be used as a reference for restoration of impacted river sections. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River (Guadalajara, Central Spain). Three sampling sites were selected: a well-preserved stream (site A), a stream with no wood riparian vegetation (site B), and a straightened and deforested reach (site C). Two habitats were selected in each site: unvegetated habitat (i.e., substrata without macrophytes) and macrophyte habitat (i.e., substrata covered by macrophytes). In each habitat, six macroinvertebrate samples (including all macrophytes or mineral particles) were collected using a Hess sampler. Diversity and density of major families were referred to the surface of the Hess sampler (=Hess surface method) and to the actual surface of either mineral particles or macrophytes (=actual surface method). In general, for the actual surface method, biomass, richness, dominance, and diversity metrics were higher in the mineral habitat than in the macrophyte habitat. This trend was different for the Hess surface method. In general, densities turned out to be higher in the unvegetated habitat than in the macrophyte habitat when using the actual surface method, but the reverse occurred when using the Hess surface method. This fact is relevant for river biomonitoring, especially when reaches with different dominant substrates (macrophytes vs mineral) are compared using just one of the methods. It is concluded that the macrobenthic metrics and density values are influenced by the method used to estimate the potential available surface for aquatic macroinvertebrates.  相似文献   

18.
Since hydromorphology in about 80% of German streams and rivers is degraded to a high degree, increased efforts in hydromorphological renaturalization are necessary. A measurement of the success of the first realized projects shows that improvement in stream morphology has a remarkably positive influence on aquatic ecology. An example of a restored stretch of a lowland stream in Saxony-Anhalt is used to describe the possibilities of success measurement programs for improvement of poor renaturalization. Therefore, a combined morphological and hydrobiological approach was developed. An integrated ecological assessment is possible by using the multimetric index EQIM (Ecological Quality Index using benthic Macroinvertebrates) and the GFI (German Fauna Index). The latter represents a tolerance measure to evaluate the hydromorphological status of a site by using certain taxa that indicate either positive or negative physical attributes. To consider the special characteristics of the stream in its landscape unit, specific reference conditions (‘Leitbild’) were defined for macroinvertebrate communities by sampling comparable but undisturbed streams in the same landscape unit. Only the combination of biological indices, hydromorphological mapping and comparison to the reference status allows for an expressive evaluation of renaturalization measures and precise conclusions for their improvement.  相似文献   

19.
Does the Structural Quality of Running Waters Affect the Occurrence of Macrophytes? The morphological structure plays, besides e.g. nutrient concentration, an important role for the integrated assessment of running waters. This paper focuses on the relationship between structural quality and macrophyte vegetation. During summer 2000 structural quality according to LAWA, macrophyte vegetation, and selected habitat parameters were recorded in 135 mapping sections in running waters in Southern Germany. In streams of high structural diversity, generally higher species richness is expected than in rivers of low diversity of habitats. However, no significant differences in macrophyte species richness were detected between different classes of structural quality. In contrast, bryophytes alone showed a significant decrease in species richness with degradation of structural quality. The number of species of other macrophytes increased, respectively. The relationship between occurrence of macrophytes, structural quality, and other environmental variables was analysed using canonical correspondence analysis. Rivers of high structural quality mostly showed high flowing velocities and were heavily shaded. These environmental conditions, which characterize river types of mountainous regions, were predominantly tolerated by bryophytes. Vascular plants and charophytes generally prefer slowly flowing and unshaded habitats. River types exhibiting these environmental conditions often are more influenced by human activities and are more structurally degraded, respectively. With respect to these fundamental differences between river types, species richness of macrophytes and class of structural quality are not correlated when all types of rivers are taken into account. Type‐specific ecomorphological parameters, which conceal the differences in species richness caused by structural quality, are discussed. Structural degraded rivers can provide good environmental conditions for vascular plants and charophytes. To predict macrophyte species richness from structural quality, a differentiation of river types is essential.  相似文献   

20.
Kondrat'ev  A. N. 《Water Resources》2001,28(5):574-577
A combination of two alternative hypotheses regarding the causes of river channel formation is described. A two-factor classification of lowland river channels is suggested. Dual typification of different types of meandering is considered: by the limiting factor (limited and free) and by genesis (developed and undeveloped). The possibility to take into account three factors simultaneously is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号