首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models.  相似文献   

2.
We develop a new numerical code with automated feature extraction, customized for tracing of coronal loops, a method we call Oriented Coronal CUrved Loop Tracing (OCCULT), which for the first time breaks even with the results of visual tracing. The method used is based on oriented-directivity tracing of curvi-linear features, but in contrast to other general feature-extraction algorithms, it is customized for solar EUV and SXR images by taking advantage of the specific property that coronal loops have large curvature radii compared with their widths. We evaluate the performance of this new code by comparing the cumulative distribution of loop lengths, the median and maximum loop lengths, the completeness of detection, and the congruency of the detected features with other numerical codes and visual tracings. We find that the new code closely approaches the results of visual perception and outperforms the other existing numerical codes. This algorithm is useful for the 3D reconstruction of the geometry, motion, and oscillations of coronal loops, with single or stereoscopic spacecraft, as well as for modeling of the loop hydrodynamics and the coronal magnetic field.  相似文献   

3.
The Solar TErrestrial RElations Observatory (STEREO) requires powerful tools for the three-dimensional (3D) reconstruction of the solar corona. Here we test such a program with data from SOHO and TRACE. By taking advantage of solar rotation, a newly developed stereoscopy tool for the reconstruction of coronal loops is applied to the solar active region NOAA 8891 observed from 1 March to 2 March 2000. The stereoscopic reconstruction is composed of three steps. First, we identify loop structures in two TRACE images observed from two vantage viewpoints approximately 17 degrees apart, which corresponds to observations made about 30 hours apart. In the second step, we extrapolate the magnetic field in the corona with the linear force-free field model from the photospheric line-of-sight SOHO/MDI data. Finally, combining the extrapolated field lines and one-dimensional loop curves from two different viewpoints, we obtain the 3D loop structures with the magnetic stereoscopy tool. We demonstrate that by including the magnetic modeling this tool is more powerful than pure geometrical stereoscopy, especially in resolving the ambiguities generated by classical stereoscopy. This work will be applied to the STEREO mission in the near future.  相似文献   

4.
The corona associated with an active region is structured by high-temperature, magnetically dominated closed and open loops. The projected 2D geometry of these loops is captured in EUV filtergrams. In this study using SDO/AIA 171 Å filtergrams, we expand our previous method to derive the 3D structure of these loops, independent of heliostereoscopy. We employ an automated loop recognition scheme (Occult-2) and fit the extracted loops with 2D cubic Bézier splines. Utilizing SDO/HMI magnetograms, we extrapolate the magnetic field to obtain simple field models within a rectangular cuboid. Using these models, we minimize the misalignment angle with respect to Bézier control points to extend the splines to 3D (Gary, Hu, and Lee 2014). The derived Bézier control points give the 3D structure of the fitted loops. We demonstrate the process by deriving the position of 3D coronal loops in three active regions (AR 11117, AR 11158, and AR 11283). The numerical minimization process converges and produces 3D curves which are consistent with the height of the loop structures when the active region is seen on the limb. From this we conclude that the method can be important in both determining estimates of the 3D magnetic field structure and determining the best magnetic model among competing advanced magnetohydrodynamics or force-free magnetic-field computer simulations.  相似文献   

5.
Heinzel  P.  Anzer  U.  Schmieder  B. 《Solar physics》2003,216(1-2):159-171
We propose a new spectroscopic model for extended dark structures around Hα filaments observed in EUV lines. As in previous papers, we call these structures EUV filaments. Our model uses at least three observed EUV lines (located shortward the hydrogen Lyman-continuum limit) to compute iteratively the altitudes at which the EUV filament extensions are located. A transition-region line (O v in the present case) can be used to derive the opacity of the Lyman continuum and the other two coronal lines (e.g., Mg x and Si xii) then give two heights: the bottom and top of the EUV filament. The method takes into account self-consistently the absorption of EUV-line radiation by the Lyman continuum, as well as the volume-blocking effect potentially important for coronal lines. As an example we compute the heights of the EUV filament at one particular position, using CDS data for the 5 May 2000 filament. At this position, the EUV filament extension lies between altitudes 28 700 and 39 000 km, so that the geometrical thickness of the structure is 10300 km (we discuss also the sensitivity of our models to variations of the line intensities). These heights are consistent with the concept of twisted magnetic flux tubes, but there could be also some influence on our results due to additional low lying cool structures from parasitic polarities.  相似文献   

6.
X-ray observations of the solar corona show that it is comprised of three-dimensional magnetic structures which appear to be primarily in the form of fluxtubes or loops. Imaging the X-ray corona has led to a greater understanding of the dynamical behaviour of and the energy distribution in these magnetic structures. However, imaging observations, by their very nature, integrate along the line of sight resulting in a two-dimensional representation of the actual three-dimensional distribution. The optically thin nature of the solar corona to X-ray radiation makes the integrated images particularly difficult to interpret. The analysis of the two-dimensional observations must, therefore, inlcude the effect of the orientation of the coronal structure to the line-of-sight direction; a fact which is almost always ignored. In this paper we discuss the effect of loop orientation on the two-dimensional representation and argue that these effects may lead to a misinterpretation of the physics occurring in the structures observed. In particular, we discuss observations taken by the Soft X-ray Telescope (SXT) on board the Yohkoh satellite, taking account of the instrumental thermal response, spatial resolution, and point-spread-function.We test the effect of geometry on the determination of the loop pressure by considering equatorial loops at various longitudes and discuss the implications of this for studies of coronal soft X-ray loops.  相似文献   

7.
The Grad–Shafranov reconstruction is a method of estimating the orientation (invariant axis) and cross section of magnetic flux ropes using the data from a single spacecraft. It can be applied to various magnetic structures such as magnetic clouds (MCs) and flux ropes embedded in the magnetopause and in the solar wind. We develop a number of improvements of this technique and show some examples of the reconstruction procedure of interplanetary coronal mass ejections (ICMEs) observed at 1 AU by the STEREO, Wind, and ACE spacecraft during the minimum following Solar Cycle 23. The analysis is conducted not only for ideal localized ICME events but also for non-trivial cases of magnetic clouds in fast solar wind. The Grad–Shafranov reconstruction gives reasonable results for the sample events, although it possesses certain limitations, which need to be taken into account during the interpretation of the model results.  相似文献   

8.
Active region magnetic flux that emerges to the photosphere from below will show complexity in the structure, with many small-scale fragmented features appearing in between the main bipole and then disappearing. Some fragments seen will be absorbed into the main polarities and others seem to cancel with opposite magnetic field. In this paper we investigate the response of the corona to the behaviour of these small fragments and whether energy through reconnection will be transported into the corona. In order to investigate this we analyse data from the Hinode space mission during flux emergence on 1?–?2 December 2006. At the initial stages of flux emergence several small-scale enhancements (of only a few pixels size) are seen in the coronal line widths and diffuse coronal emission exists. The magnetic flux emerges as a fragmented structure, and coronal loops appear above these structures or close to them. These loops are large-scale structures – most small-scale features predominantly stay within the chromosphere or at the edges of the flux emergence. The most distinctive feature in the Doppler velocity is a strong ring of coronal outflows around the edge of the emerging flux region on the eastern side which is either due to reconnection or compression of the structure. This feature lasts for many hours and is seen in many wavelengths. We discuss the implications of this feature in terms of the onset of persistent outflows from an active region that could contribute to the slow solar wind.  相似文献   

9.
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington Rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron-density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 Å band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic-field structures. We show that the density-maximum locations can serve as an indicator of current-sheet position, while the locations of the density-gradient maximum can be a reliable indicator of coronal-hole boundaries. We find that the magnetic-field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 R. We also find that the potential-field model with a fixed source surface is inconsistent with the boundaries between the regions with open and closed magnetic-field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal-field models and test the accuracy of the magnetic-field approximations for coronal modeling.  相似文献   

10.
Using SOHO/MDI and SOHO/EIT data we study properties and dynamics of interconnected active regions, and the relations between the photospheric magnetic fields and coronal structures in active longitudes during the beginning of solar cycle 23. The emergence of new magnetic flux results in appearance of new interconnecting loops. The existence of stable coronal structures strongly depends on the photospheric magnetic fluxes and their variations. We present some initial results for a complex of solar activity observed in April 1997, and discuss the role of reconnection in the formation of the interconnected loops and coronal holes.  相似文献   

11.
I. Ballai 《Solar physics》2007,246(1):177-185
Following the observation and analysis of large-scale coronal-wave-like disturbances, we discuss the theoretical progress made in the field of global coronal seismology. Using simple mathematical techniques we determine average values for the magnetic field together with a magnetic map of the quiet Sun. The interaction between global coronal waves and coronal loops allows us to study loop oscillations in a much wider context, i.e. we connect global and local coronal oscillations.  相似文献   

12.
M. R. Kundu 《Solar physics》1996,169(2):389-402
We present a review of selected studies based upon simultaneous radio and X-ray observations of solar flares and coronal transients. We use primarily the observations made with large radio imaging instruments (VLA, BIMA, Nobeyama, and Nançay) along with Yohkoh/SXT and HXT and CGRO experiments. We review the recent work on millimeter imaging of solar flares, microwave and hard X-ray observations of footpoint emission from flaring loops, metric type IV continuum bursts, and coronal X-ray structures. We discuss the recent studies on thermal and nonthermal processes in coronal transients such as XBP flares, coronal X-ray jets, and active region transient brightenings.Dedicated to Cornelis de Jager  相似文献   

13.
The space mission Solar TErrestrial RElations Observatory (STEREO) will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems, the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear, and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently, the 3D coronal magnetic field provides a proxy for the stereoscopy, which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.  相似文献   

14.
Kenneth P. Dere 《Solar physics》1982,75(1-2):189-203
XUV spectroheliograms of 2 active regions are studied. The images are due to lines emitted at temperatures between 8 x 104 K and 2 x 106 K and thus are indicative of transition region and coronal structures. The hot coronal lines are formed solely in loop structures which connect regions of opposite photospheric magnetic polarity but are not observed over sunspots. Transition region lines are emitted in plages overlying regions of intense photospheric magnetic field and in loops or loop-segments connecting such regions. The hot coronal loops are supported hydrostatically while only some of the transition zone loops are. The coronal and transition zone loops are distinctly separated and are not coaxial. A comparison of direct measurements of electron densities using density sensitive line ratios with indirect measurements using emission measures and path lengths shows the existence of fine structures of less than a second of arc in transition region loops. From a similar analysis, hot coronal loops do not have any fine structure below about 2 seconds of arc.  相似文献   

15.
The dynamics of interacting coronal loops and arcades have recently been highlighted by observations from theYohkoh satellite and may represent a viable mechanism for heating the solar corona. Here such an interaction is studied using two-dimensional resistive magnetohydrodynamic (MHD) simulations. Initial potential field structures evolve in response to imposed photospheric flows. In addition to the anticipated current sheet about theX-point separating the colliding flux systems, significant current layers are found to lie all the way along the separatrices that intersect at theX-point and divide the coronal magnetic field into topologically distinct regions. Shear flows across the separatrices are also observed. Both of these features are shown to be compatible with recent analytical studies of two-dimensional linear steady-state magnetic reconnection, even though the driven system that has been simulated is not strictly ‘open’ in the sense implied by steady-state calculations. The implications for future steady-state models are also discussed. The presence of the neutral point also brings into question any constant-density approximations that have previously been used for such quasi-steady coronal evolution models. This results from the intimate coupling between the neutral point and its separatrices communicated via the gas pressure. In terms of the detailed energetics during the arcade evolution, preliminary results reveal that on the order of 3% of the energy injected by the footpoint motions is lost purely through ohmic dissipation. We would therefore anticipate a local hot spot between the interacting flux systems, and a brightening distributed along the length of any separatrix field lines. Furthermore, as the resistivityη is reduced, the flux annihilation rate and the ohmic dissipation rate are found to scale independently ofη.  相似文献   

16.
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona.Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to coronal heating, coronal seismology, solar flares and coronal mass ejections(CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations and helicity of filaments. With high-resolution and highsensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments.  相似文献   

17.
The solar magnetic field maps every point in the corona to a corresponding place on the solar surface. Identifying the magnetic connection map is difficult at low latitudes near the heliospheric current sheet, but remarkably simple in coronal hole interiors. We present a simple analytic magnetic model (‘pseudocurrent extrapolation’) that reproduces the global structure of the corona, with significant physical advantages over other nearly analytic models such as source-surface potential field extrapolation. We use the model to demonstrate that local horizontal structure is preserved across altitude in the central portions of solar coronal holes, up to at least 30 Rs, in agreement with observations. We argue that the preserved horizontal structure may be used to track the magnetic footpoint associated with the location of a hypothetical spacecraft traveling through the solar corona, to relate in situ measurements of the young solar wind at ∼10–30 Rs to particular source regions at the solar surface. Further, we discuss the relationship between readily observable geometrical distortions and physical parameters of interest such as the field-aligned current density.  相似文献   

18.
封莉  甘为群 《天文学进展》2005,23(3):215-225
日冕加热是太阳物理中一个基本问题。随着一批高性能仪器(如TRACE、SOHO、Yohkoh)投入观测,作为太阳日冕中一种基本结构的冕环,其观测资料日益丰富。冕环加热是日冕加热的一个重要组成部分,越来越得到人们的重视。在简要介绍冕环最新观测和研究进展后,以其一维模型为基础,着重讨论了现有冕环加热结构和加热机制的研究进展。  相似文献   

19.
The magnetosonic modes of magnetic plasma structures in the solar atmosphere are considered taking into account steady flows of plasma in the internal and external media and using a slab geometry. The investigation brings nearer the theory of magnetosonic waveguides, in such structures as coronal loops and photospheric flux tubes, to realistic conditions of the solar atmosphere. The general dispersion relation for the magnetosonic modes of a magnetic slab in magnetic surroundings is derived, allowing for field-aligned steady flows in either region. It is shown that flows change both qualitatively and quantitatively the characteristics of magnetosonic modes. The flow may lead to the appearance of a new type of trapped mode, namelybackward waves. These waves are the usual slab modes propagating in the direction opposite to the internal flow, but advected with the flow. The disappearance of some modes due to the flow is also demonstrated.The results are applied to coronal and photospheric magnetic structures. In coronal loops, the appearance of backward slow body waves or the disappearance of slow body waves, depending upon the direction of propagation, is possible if the flow speed exceeds the internal sound speed ( 300 km s–1). In photospheric tubes, the disappearance of fast surface and slow body waves may be caused by an external downdraught of about 3 km s–1.  相似文献   

20.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号