首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Soil material sampled from a reclamation experiment established in a former “Jeziórko” Sulphur Mine was analysed. The reclamation was carried out on a soil-less substrate with a particle size distribution of slightly loamy sand characterised by high acidity and poor sorption capacity. The different variants of the experiment consisted in the addition of post-flotation lime, mineral fertilisation, sewage sludge, and mineral wool to the reclaimed soil-less substrate. Next, the plots prepared in this way were sown with a mixture of grasses. A plot without any reclamation treatments served as a control. The analyses consisted in the determination of soil enzymatic parameters. The results obtained revealed a positive effect of the reclamation treatments on the analysed properties. All wastes and combinations thereof introduced into the degraded substrate stimulated catalase, protease, and urease activity. The activity of the other enzymes, i.e. dehydrogenases and acid phosphatase, as well as the level of fluorescein diacetate hydrolysis increased only in objects treated with sewage sludge. In turn, in objects receiving mineral fertilisation, a decline in the acid phosphatase activity was noted. In objects treated with mineral wool, the level of stimulation was dependent on the mode of application of this additive. In general, a mixture of 500 m3 ha?1 of mineral wool with the substrate proved more beneficial (with the exception of the acid phosphatase activity and fluorescein diacetate hydrolysis). A higher increase in the analysed enzymatic parameters was also found in objects treated with sewage sludge combined with post-flotation lime than in objects where sewage sludge was used alone.  相似文献   

2.
Macro- and micronutrient availability in high-pH soil is a major constraint in crop production especially for the sensitive plants, such as kiwi fruit. A field study was conducted to investigate the multiyear effects of biosolid application on nutrient availability of agricultural soil and elemental sufficiency in kiwi fruit. Solar-dried biosolid applied at 0, 25, 50, 100 and 200 t ha?1 annually for successive 2 years. The considered soil properties included pH, EC, organic matter, N, P, K, macro–microelements, heavy metals and DTPA-extractable elements were determined. Results showed that biosolid addition significantly reduced to initial soil pH from 8.2 to 7.8 at higher application doses. Optimization of pH resulted in increased levels of soluble elements in all treatments studied. Biosolid application particularly increased Fe, Cu, Zn, Mn and B concentrations to sufficient levels. Among the other elements analyzed, were not significantly affected by biosolid application. Biosolid addition also increased soil DTPA-extractable elements, especially Cd, Cu, Mn, Pb and Zn. Significant increases in DTPA-extractable elements occurred for increasing application rates at 50, 100 and 200 t ha?1 compared to control. We conclude that municipal biosolid applied at an annual rate at or less than 200 t ha?1 can be safely used for kiwi fruit production on high-pH soils.  相似文献   

3.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   

4.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

5.
Field measurements conducted 4 years after the construction of a new portion of the Weixi?CShangri-La road in Yunnan, China, reveal that unprecedented rates of mass wasting occurred along the road with much of this sediment directly impacting the headwaters of the Mekong River. Landslide erosion (including dry ravel) exceeded 33,000 t ha?1 year?1 along the most severely eroded sections of the road and averaged more than 9,600 t ha?1 year?1 along the surveyed 23.5 km of road; these values are the highest ever reported for road-related landslides. While surface erosion was only about 7% of the total erosion from the road, it is still more than an order of magnitude higher than typical surface erosion rates from disturbed lands in Southeast Asia. Combined landslide and surface erosion from this road delivered an estimated 19 times more sediment to the river than the remaining 99.6% of the contributing catchment. These sediment inputs are aggrading local channels, promoting downstream sediment transport, degrading aquatic habitat, and creating the possibility for a future debris flood or hyperconcentrated flow.  相似文献   

6.
Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging. At Coweeta Hydrologic Laboratory the coupling of biotite to its transformational weathering product is only valid if the stoichiometric relationship for the two phases is known; this relationship is unlikely layer-for-layer. Rates of biotite weathering and transformation of its secondary weathering product at the Coweeta Hydrological Laboratory are comparable with other Appalachian watersheds. The magnitude and sign of the difference between field- and laboratory-determined biotite weathering rates are similar to those of other silicate minerals. The influence of major-cation proportions in biomass on the rates of biotite weathering and transformational weathering product is greatest for watersheds with high biomass aggradation rates. The watershed with the lowest bedrock reactivity and highest flushing rate yielded the highest gibbsite formation rate of ~500 mol ha?1 year?1 and lowest kaolin-group mineral formation rates of 4–78 mol ha?1 year?1. The kaolin-group mineral formation rate increases as bedrock reactivity increases and flushing rate decreases to a maximum of ~300 mol ha?1 year?1, with a similar minimum gibbsite formation rate. The relative differences in bedrock reactivity and flux of water through Coweeta Hydrological Laboratory watersheds studied appear to be invariant over geologic timescales.  相似文献   

7.
Soil aggregation is one of the key properties affecting the productivity of soils and the environmental side effects of agricultural soils. In this study, we aimed to identify whether biochar could be used to improve aggregate stability. A 2-year field experiment was conducted to investigate the effect of biochar application (0, 2.5, 5, 10, 20, 30 and 40 t ha?1) on aggregate characteristics of upland red soil under a rapeseed–sweet potato rotation in subtropical China. Percentage of aggregate destruction (PAD0.25), mean weight diameter (MWD), geometric mean diameter (GMD) and fractal characteristics of soil aggregates were measured using both wet and dry sieving methods. Results showed that applying biochar significantly decreased the percentage of aggregate destruction and soil fractal dimension and increased the MWD and GMD. The optimal amelioration was observed when biochar was applied at a rate of 40 t ha?1. The decline of the fractal dimension of dry aggregates was 2–9 times as much as that of water-stable aggregates in the 0–15 soil layer and 1–4 times in the 15–30 cm soil layer. These results suggested that biochar could improve the resistance of aggregates to stresses and provide scientific strategies for the agricultural production.  相似文献   

8.
Seasonal plant growth dynamics were followed for a year in undisturbed plots of tall and short formSpartina alterniflora Loisel. and in plots of short formS. alterniflora which were enriched with sewage sludge at a rate of 100 g dry sludge m?2wk?1, corresponding to a nitrogen enrichment of 2 g N m?2wk?1. Monthly determinations of aboveground live and dead biomass, density of live stems, the ratio of number of young shoots to total number of shoots, and belowground mass of macro-organic matter to a depth of 30 cm were made for each area. Sludge fertilization increased the live biomass of the short formS. alterniflora by up to 150% of the control live biomass, but had little effect on the dead biomass, stem density, or proportion of young shoots. There was a trend of increased amount of belowground macro-organic matter in fertilized compared to control plots during the last 6 months of the study. In all areas, there was a marked decrease in the proportion of young shoots from winter to early summer, followed by a rapid increase in the percent of young shoots from late summer to fall. Sampling of plots 7 and 20 months after termination of sludge enrichment showed higher plant biomass and % N content in surface soils, but no difference in N content of live plant tissue, in fertilized compared to unfertilized marsh. After 20 months, about half of the sludge nitrogen remaining in the soils of the fertilized plots had disappeared.  相似文献   

9.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

10.
This study was conducted to determine how energy balances and economical indices of barley production are affected by irrigated and dry land farming systems. Data were collected from 26 irrigated and 68 dry land barley farms. The complimentary data were collected through questionnaires filled by farmers in face-to-face interviews during 2010. The results indicated that total energy input for irrigated barley was 19,308.96 MJ ha?1 and for dry land barley was 7,867.82. The non-renewable energy was about 66.83 and 71.02 % in irrigated and dry land systems while the renewable energy was 33.17 and 28.98 %, respectively. Energy use efficiency is energy output MJ ha?1 divided by energy input MJ ha?1. Energy use efficiency was 5.3 and 3.96 in dry land and irrigated systems, respectively. Although net return in the irrigated system (266.13$ ha?1) was greater than that in the dry land system (208.64) but the benefit to cost ratio in irrigated system (1.38) was lower than that in the dry land system (1.58). Results showed that human labor as well as machinery energy inputs were the most important inputs influencing the dry land and irrigated barley production systems, respectively. The second important input in the irrigated barley was electricity (with 0.16) which was followed by water for irrigation and diesel fuel (0.14 and 0.13, respectively). In total energy consumption, the ratio of non-renewable energy was greater than that of renewable energy. Since the main non-renewable energy input was diesel, electricity, and chemical fertilizers; therefore, management and improvement in the application of these inputs would increase the proportion of renewable energy.  相似文献   

11.
This paper presents an experimental study on a deeply dewatered sewage sludge produced by using a new technique of membrane filter press. The experiments involve measurements of sludge composition, basic physical properties, shear strength, water permeability, and leaching toxicity. The measurements of shear strength and permeability were also performed on the sludge specimens soaked in a low acid leachate or distilled water for 1 and 2 months. This is to investigate the influence of chemical change in pore fluid as a result of rainfall infiltration or leachate seepage at landfills. Comparison tests were also carried out on silty clay that is commonly used for landfill cover material. The experimental results show that the deeply dewatered sludge contains 66 % organic content and 85 % water content (dry mass basis). The undrained shear strength of the sludge is >25 kPa even after 2-month soaking in the leachate and distilled water, meeting the requirement of the Chinese standard [CJ/T249-2007, Disposal of sludge from municipal wastewater treatment plant: sludge quality for co-landfilling. Ministry of Building and Construction, P.R. China (in Chinese), 2007]. The measured cohesion and friction angle for the sludge are >20 kPa and 22.3°, respectively. The soaking of sludge specimens in either leachate or distilled water resulted in an increase in frictional angle by several degrees. The water permeability for the sludge ranges from 0.68 × 10?8 to 1.3 × 10?8 cm/s, and permeability after 2-month soaking is less than the minimum requirement for the barrier layer of landfill covers (i.e., 1.0 × 10?7 cm/s). The concentrations of heavy metals leaching from the dewatered sludge are lower than the limit values of leaching toxicity for the wastewater discharge standard of China. The experimental results indicate that deeply dewatered sludge can be used as an alternative material for the barrier layer of landfill covers.  相似文献   

12.
High water and organic content of sewage sludge constricts its reuse and disposal. It is often necessary to solidify/stabilize the dewatered sludge with solidifying agents before landfill disposal. In this study, the sewage sludge was conditioned with skeleton builders, i.e., fly ash and lime combined with ferric chloride for the purpose of improving the dewatering efficiency. The dewatered sewage sludge was then directly reused as landfill cover materials since the skeleton builders also play a role in solidification of sludge. The geotechnical properties of the dewatered sewage sludge were investigated. The results show that the plasticity index of the dewatered sludge increases compared to that of the dewatered sludge without any conditioner, and the permeability coefficient changes from 10?8 to 10?5 cm s?1. Furthermore, the strength of specimens increase with curing days. Microstructure analyses reveal that the main hydrated products are calcium silicate hydrate and ettringite, which contribute to the solidification/stabilization of the dewatered sludge. The results indicate that the dewatered sewage sludge conditioned with skeleton builders can be used as landfill covers. This study provides an alternative for traditional sewage sludge treatment and disposal.  相似文献   

13.
Microorganisms, organic matter, heavy metals are the main pollutants in sewage water. The increasing water demand pressurized people to use the sewage water. Different systems, chemicals and physical treatments were used in sewage water treatment. The aim of this work is to study the effect and correlations of primary (Ca(OH)2 filtration and H2O2) and secondary (dissolved oxygen, organic matter, conductivity, pH and OD) factors on fungi present in sewage water in addition to proving the sequence of the system used in the current study. After treatment, fungi were examined, identified on Czapek agar and analyzed using multivariate tools (CANOCO: DCA and CCA) and R software. The treatment includes two main steps: liming filtration and oxidation, respectively. All parameters were negatively or positively correlated (organic matter, pH, conductivity %, optical density, fungal CFU ml?1, dissolved oxygen). Heavy metals were decreased due to the application of Ca(OH)2 and H2O2, respectively. There were two main groups of fungi. The larger was correlated with the organic matter, whereas the second was tolerating calcium hydroxide concentrations. Aspergillus sydowii tolerated hydrogen peroxide (0.2 mll?1(33%); Ca(OH)2, 0.25 gl?1). Sequential steps treatment was healthy and economically efficient. The proposed system improved water characteristics. The recommended amount of Ca(OH)2 and H2O2 was 0.25 gl?1 and 0.2 mll?1(33%), respectively, and can remove more than 99.9% of fungal CFUs. The current study minimized the optimum dose of hydrogen peroxide used in the disinfection of sewage water from 1.5 (Mohamed in Chem Eng J 119:161–165, 2006) to 0.2 mll?1 of H2O2 (the current study).  相似文献   

14.
Estimation of spatial extent of soil erosion, one of the most serious forms of land degradation, is critical because soil erosion has serious implications on soil fertility, water ecosystem, crop productivity and landscape beauty. The primary objective of the current study was to assess and map the soil erosion intensity and sedimentation yield of Potohar region of Pakistan. Potohar is the rainfed region with truncated and complex topography lying at the top of the Indus Basin, the world’s largest irrigation networks of canals and barrages. Spatially explicit Revised Universal Soil Loss Equation (RUSLE) Model integrated with Remote Sensing-GIS techniques was used for detecting/mapping of erosion prone areas and quantification of soil losses. The results show that the Potohar region is highly susceptible to soil erosion with an average annual soil loss of 19 tons ha?1 year?1 of which the maximum erosion (70–208 tons ha?1 year?1) was near the river channels and hilly areas. The sediment yield due to the erosion is as high as 148 tons ha?1 year?1 with an average of 4.3 tons ha?1 year?1. It was found that 2.06% of the total area falls under severe soil erosion, 13.34% under high erosion, 15.35% under moderate soil erosion while 69.25% of the area lies in the low (tolerable) soil erosion. Chakwal and Jhelum districts of the region are seriously affected by erosion owing to their topography and soil properties. The information generated in this study is a step forward towards proper planning and implementation of strategies to control the erosion and for protection of natural resources. It is, hence, necessary that suitable water harvesting structures be made to control water to prevent soil erosion and provision of water in the lean season in this region. Tree plantation and other erosion control practices such as strip cropping can also minimize soil erosion in this region.  相似文献   

15.
Increasing sediment loads entering the Lake Tanganyika ecosystem are hastening the need for improved understanding of the linkages between catchment characteristics and influent sediment transport and loading. Sediment loads of two catchments at the southern end of the lake were estimated for October 1998–December 1999, and catchment characteristics determined using GIS. It was found that both sediment yields and loads were higher from the catchment of the Lunzua River (19.8 t km?2 and 20,114 t, respectively) compared with that of the Kalambo (4.1 t km?2 and 12,197 t) in 1999. These differences were both attributed to the smaller size and higher road density of the Lunzua catchment, and suggest that previous recommendations regarding the positioning of underwater lake reserves fail to take into account the low sediment retention capacity of small mountainous rivers. Differences between the study rivers in the transport of suspended sediments, organic matter, and bedload sediments into the lake were also found, the latter determined by the novel application of the 'McLaren Model'.  相似文献   

16.
The Hauver Branch and Hunting Creek watersheds in Catoctin Mountain, Maryland, USA, are small rural watersheds that receive road salt during the winter. Base cation evidence of road salt application in stream water disappears by approximately September for Hauver Branch, but never disappears for Hunting Creek. The fraction of the precipitation-corrected watershed fluxes of both Mg2+ and Ca2+ attributable to cation exchange associated with road salt Na+ inputs are 14 and 19 % for Hauver Branch and Hunting Creek, respectively. The percentage of divalent cations in stream waters resulting from road salt application is calculated using the watershed chemical weathering Na+/SiO2 molar ratio. Calculation of a representative chemical weathering Na+/SiO2 molar ratio may be problematic with spatially variable bedrock, and/or inputs from water softeners, septic systems, and wastewater treatment plants. Therefore, investigations of small forested rural watersheds offer insights into road salt dynamics that may be lost at larger scales and/or with increased urbanization. The quantities of road salt application to the Hauver Branch and Hunting Creek watersheds are 3.3 and 11 t km?2 year?1, respectively. The per-lane-length-normalized road salt application rates for the Hauver Branch and Hunting Creek watersheds are 10 and 22 t lane?1 km?1 year?1, respectively. These per-lane-length-normalized road salt application rates are relatively large compared to more urbanized watersheds located north of the study site where the application rates are reported by municipalities. These findings may indicate that road and highway administrations may underestimate their rates of road salt application.  相似文献   

17.
Disturbances have the potential to reduce soil water and nutrient retention capacity by decreasing soil organic matter (SOM), which is particularly true for sandy soils characterized by an inherent low capacity to retain nutrients and water. To restore degraded areas, several works have shown positive effects of organic matter inputs on soil properties and plant growth. Despite these promising results, it is still unclear how organic matter inputs and plant growth modify the balance between soil nutrient and water supply. The objectives of the present work were (1) to evaluate the effects of biosolids compost and municipal compost addition on plant available water (PAW), soil moisture and soil temperature in a burned sandy soil of NW Patagonia (Argentina), and (2) to relate PAW and soil moisture with bulk density, soil organic carbon, nutrient availability (inorganic and potential mineralized nitrogen (N), extractable phosphorous) and aboveground phytomass. An experiment with excised vegetation and watering was also conducted. Compost application increased SOM, but it was insufficient to increase PAW. The increase in potential mineralized N in the amended soils indicated that during moist periods (and adequate temperatures), N uptake was increased, enhancing plant growth. As a consequence, higher plant water consumption in amended treatments resulted in lower soil moisture than in non-amended plots during the vegetative growth period that coincides with decreasing precipitation. Results indicate that a relatively high dose of compost (40 Mg ha?1) applied to a sandy soil, contributed to increase nutrient availability and consequently, aboveground phytomass and water consumption.  相似文献   

18.
Initial risk assessment characterization carried out in a tailing pond, called “El Lirio”, came from metal mining showed that these soils have low fertility; low amounts of nitrogen, organic carbon, phosphorous, and carbonates; and high concentrations of total metals (10,719 mg Zn kg?1, 2,821 mg Pb kg?1, and 30 mg Cd kg?1), diethylenetriaminepentaacetic acid (DTPA)-extractable metals, and water-soluble metals, which suggest an urgent need for remediation. Different amendments have been selected, including three anthropogenic wastes: pig manure, sewage sludge, and lime; all were added to the constructed plots in the mine pond. The objectives were to: (1) reduce acid mine drainage, metal mobilization, and toxicity and (2) provide nutrients which enable plant establishment. Results showed an increase in pH, electrical conductivity, total nitrogen, organic carbon, and equivalent calcium carbonate contents. Although water- and DTPA-extractable Zn, Pb, and Cd were reduced, there was an increment in DTPA- and water-extractable Cu due to the addition of organic matter. The amendments also enhanced the establishment of plants. This study constitutes the first stage of a successful remediation programme that can be applied in similar mining areas. The chemical stabilization of metals is a cost-effective alternative for remediation of mine areas in SE Spain.  相似文献   

19.
Sewage sludge usually contains significant amount of Zinc (Zn) and is widely used in agricultural lands. A laboratory experiment was performed to determine Zn desorption characteristics in unamended and amended soils with sewage sludge. Ten calcareous soils were amended with 1 % (w/w) sewage sludge. Amended and unamended soils were incubated at field capacity at 25 ± 1 °C for 1 month. After incubation, the kinetics of Zn desorption in amended and unamended soils were determined by successive extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) in a period of 1–504 h at 25 ± 1 °C. The results of kinetics study showed that extracted Zn and desorption rate constants in the amended soils were significantly (p < 0.01) higher than in the unamended soils. The results showed that Zn desorption increased from 201 to 343 % in amended soil with respect to unamended soils. The amounts of desorbed Zn in the unamended soils ranged from 3.73 to 8.79 mg kg?1, while the amounts of desorbed Zn in amended soils ranged from 11.47 to 17.66 mg kg?1. Desorption kinetics of Zn in two soils conformed fairly well to first-order, parabolic diffusion and power function equations. The results of stepwise regression analysis indicated that calcium carbonate equivalent and clay could be used to estimate Zn desorption characteristics in DTPA-TEA solution in the amended and unamended calcareous soils. It can be concluded that sewage sludge applied to calcareous soils may enhance the source of Zn for the plants.  相似文献   

20.
The pollution of soil with heavy metals has direct or indirect adverse effect on human health. The present work was conducted to identify all the expected sources and sinks for heavy metals by applying mass balance model to identify the retention rate of metals by soils in Yaakob village, south Sohag Governorate, Egypt. The studied inputs (sources) include P-fertilizers, irrigation water and dustfall, while the main outputs (sinks) are drainage water and harvested plants. The measurements indicate that soil, clover, dustfall and P-fertilizers contain considerable concentration of Cd, Cr, Co, Cu and Pb. The mass balance measurements indicate that the accumulation rate of Cd, Cr and Co in soil was 5.4, 54.6 and 16.3 g ha?1 year?1, respectively. However, depletion trend of Pb and Cu was about 1.4 and 5.2 g ha?1 year?1, respectively. The main source of Cd, Pb, Cr and Co in the study area is P-fertilizers with input flux 14.9, 89.9, 198.6 and 18.5 g ha?1 year?1, while Cu source was dustfall with 19.33 g ha?1 year?1. The index of geoaccumulation calculations indicates different degrees of contamination with Cd, Cr, Co and Cu. On the other hand, the main sink for the studied heavy metals was the Egyptian clover (Trifolium alexandrinum) which can be considered a good bioaccumulator of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号