首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Ultrahigh-pressure metamorphic (UHPM) rocks of the Kokchetav Massif of Kazakhstan contain metamorphic microdiamond and coesite inclusions inside rigid capsules such as garnet and zircon. Precambrian protoliths of the UHPM rocks were metamorphosed at around 530 Ma, at pressures of about 7 GPa, which suggests that crustal protoliths were subducted to depths of over 200 km. Primary UHPM minerals are poorly preserved due to partial obliteration by subsequent Barrovian overprint during exhumation and later collision events in Caledonian times. We report the results of detailed mapping of the Kokchetav Massif and use structural data to propose intrusion and exhumation mechanisms for the UHPM rocks. Detailed mapping revealed that many subvertical structures in the ultrahigh-pressure–high-pressure (UHP–HP) units were formed due to later folding. The primary structure appears to be subhorizontal and the total thickness of the UHP rocks is estimated at around 2 km. The first order structure is sandwich-like; that is, the UHP–HP units are separated from underlying low-P metamorphic rocks of the Daulet Series and from feebly metamorphosed to unmetamorphosed sedimentary strata on the top by subhorizontal faults. Kinematic indicators show top-to-the-south sense of shear along the top, and top-to-the-north displacement along the bottom boundaries. These shear senses, together with the observed metamorphic gradients, suggest that the thin UHPM sheet was extruded toward the north. We consider wedge extrusion to have been the most effective mechanism for the exhumation of the UHPM rocks.  相似文献   

2.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   

3.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   

4.
Abstract The Kokchetav Massif of Kazakhstan includes high to ultrahigh-pressure (HP–UHP) metamorphic rocks (some of which were recrystallized at depths in excess of 150 km), juxtaposed against much lower pressure metamorphic components. We investigated the relationship between the HP–UHP metamorphic unit and the low pressure (LP) unit (Daulet Suite) in the Sulu–Tjube area, where the metamorphic rocks have previously been interpreted as constituting a megamelange with subvertical structural attitudes. Analyses of fold structures suggest that the HP–UHP metamorphic unit overlies the LP unit across a west-dipping subhorizontal boundary. In addition, kinematic indicators display top-to-the-north senses of shear along the tectonic contact between the two units, indicating that the HP–UHP unit has been extruded northward onto the LP unit. Following the juxtaposition of the two units, upright folds developed in both units, and these are associated with the previously reported steeply dipping metamorphic foliations. These data have important implications for the mode of exhumation of the UHP rocks from upper mantle to shallow crustal depths.  相似文献   

5.
6.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

7.
Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt,Xinjiang,northwest China.After detailed petrological study,three samples including one fresh eclogite TK003,one blueschist sample TK026-8 and one retrograded eclogite TK027,were selected for phase equilibrium modeling under NC(K)MnFMASHO(N2O-CaO-K2O-MnO-FeO-MgO-Al2O3-SiO2-H2O-O)system,by thermocalc 3.33 software.Composition analyses of garnets in these three samples show typical growth zoning with Xpy and Xgrs increasing,Xspss decreasing from core to rim.Pseudosection modeling of the garnet zonation reflects that the eclogites and blueschist experienced a similar P-T evolution trajectory,with a near iso-baric heating in the early stage,and reached eclogite facies metamorphic field with peak P-T regime of 480–515°C,2.00–2.30 GPa.Subsequently the rocks experienced an early iso-thermal decompression retrograde stage with P-T conditions of 515–519°C,1.78–1.93 GPa.Variations of mineralogy and modes of these rocks are probably due to different retrograde paths as a consequence of different bulk-rock composition,as well as a variation in fluid activity during exhumation.P-T calculation and a peak geothermal gradient of 6–7°C/km indicate HP rocks in the Kekesu Valley experienced cold subducted eclogite facies metamorphism.Thus a huge oceanic subduction eclogite facies metamorphic belt in southwest Tianshan has been recognized,extending from the Kekesu Valley in the east to the Muzhaerte Valley in the west for nearly200 km.However,UHP evidence has not been found in the Kekesu terrane,perhaps because the slab in east part of southwest Tianshan did not subduct into such a great depth.  相似文献   

8.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

9.
苏鲁超高压变质带北部地球物理调查(1)─—深反射地震   总被引:7,自引:0,他引:7  
苏鲁超高压变质带是世界上研究陆一陆碰撞俯冲和壳幔作用的最佳地质场所之一.为了解超高压变质带岩石的形成、折返和相应的动力学过程,必须了解该区的地壳和浅地幔构造.本文介绍了该区北部的地质情况和进行深反射地震调查取得的成果,包括(1)在五莲─青岛断裂南侧超高压变质岩片向北倾斜,呈现叠复组构,反映岩片的折返;(2)根据地震资料推测在146Ma前后胶南地块的隆升一伸展构造内幕;(3)超高压变质岩片厚约12km,由于含有大量相辉岩透镜体,地震波速高达6.8─7.3km/s;(4)莫霍面附近有许多楔形反射体,反映陆一陆碰撞;(5)石门地区7km深处存在高波速的强反射体,可作为在该区进行大陆科学钻探的候选场址.  相似文献   

10.
Han-Lin  Chen  Zi-Long  Li  Shu-Feng  Yang  Chuan-Wan  Dong  Wen-Jiao  Xiao  Yoshiaki  Tainosho 《Island Arc》2006,15(1):210-222
Abstract A mafic granulite body was newly discovered in the Altay Orogenic Belt, northwest China. The rocks comprise a suite of coarse‐grained and fine‐grained granulites. Orthopyroxenes (hypersthenes) in the rocks have high XMg and low Al2O3 contents, whereas clinopyroxenes have low TiO2 and Al2O3 contents. Amphiboles and biotites have a high Mg/(Mg + Fe2+) ratio and low contents of F and Cl. The peak metamorphic pressure–temperature (P–T) conditions are estimated as 750–780°C and 6–7 kbar, and retrograde P–T conditions are in the range of 590–620°C and 2.3–3.7 kbar, indicating significant decompression. Metamorphic reactions and P–T estimates define a clockwise P–T path. Geochemically, the rocks are high in Mg/(Mg + Fe) and Al2O3, depleted in U, Th, K and Rb, and characterized by light rare earth element enrichment and a weak positive Eu anomaly. The Altay mafic granulite shows depleted Nb, P and Ti contents in the mid‐oceanic ridge basalt normalized spider diagram. The geochemical characteristics suggest that the protolith of the Altay mafic granulite was calc‐alkaline basalt and andesite with an island‐arc affinity. The rock has a high 143Nd/144Nd ratio with ?Nd(0) > 0, indicating derivation from a mantle‐depleted source. In the present study, a two‐stage model for the evolution of the Altay mafic granulite is proposed: an early stage in which calc‐alkaline basalt and andesite with island‐arc affinity were subducted into a deeper level of the crust and subjected to granulite‐facies metamorphism generating the mafic granulite, followed by the later stage exhumation of the system into the upper crust by the late Paleozoic thrusting.  相似文献   

11.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

12.
High-pressure metamorphic rocks are exposed in Karangsambung area of central Java, Indonesia. They form part of a Cretaceous subduction complex (Luk–Ulo Complex) with fault-bounded slices of shale, sandstone, chert, basalt, limestone, conglomerate and ultrabasic rocks. The most abundant metamorphic rock type are pelitic schists, which have yielded late Early Cretaceous K–Ar ages. Small amounts of eclogite, glaucophane rock, garnet–amphibolite and jadeite–quartz–glaucophane rock occur as tectonic blocks in sheared serpentinite. Using the jadeite–garnet–glaucophane–phengite–quartz equilibrium, peak pressure and temperature of the jadeite–quartz–glaucophane rock are P  = 22 ± 2 kbar and T  = 530 ± 40 °C. The estimated P–T conditions indicate that the rock was subducted to ca 80 km depth, and that the overall geothermal gradient was ∼ 7.0 °C/km. This rock type is interpreted to have been generated by the metamorphism of cold oceanic lithosphere subducted to upper mantle depths. The exhumation from the upper mantle to lower or middle crustal depths can be explained by buoyancy forces. The tectonic block is interpreted to be combined with the quartz–mica schists at lower or middle crustal depths.  相似文献   

13.
苏鲁超高压变质带北部地球物理调查(1)─-深反射地震   总被引:17,自引:8,他引:9  
苏鲁超高压变质带是世界上研究陆一陆碰撞俯冲和壳幔作用的最佳地质场所之一.为了解超高压变质带岩石的形成、折返和相应的动力学过程,必须了解该区的地壳和浅地幔构造.本文介绍了该区北部的地质情况和进行深反射地震调查取得的成果,包括(1)在五莲─青岛断裂南侧超高压变质岩片向北倾斜,呈现叠复组构,反映岩片的折返;(2)根据地震资料推测在146Ma前后胶南地块的隆升一伸展构造内幕;(3)超高压变质岩片厚约12km,由于含有大量相辉岩透镜体,地震波速高达6.8─7.3km/s;(4)莫霍面附近有许多楔形反射体,反映陆一陆碰撞;(5)石门地区7km深处存在高波速的强反射体,可作为在该区进行大陆科学钻探的候选场址.  相似文献   

14.
A high‐temperature (T) metamorphic complex occurs in the Omuta district, northern Kyushu, Japan. Three metamorphic zones are defined based on pelitic mineral assemblage, i.e. chlorite–biotite zone, muscovite–andalusite zone and sillimanite–K‐feldspar zone with ascending metamorphic grade from north to south. Two isograds trend approximately east–west, which is oblique to the boundary between the metamorphic complex and the Tamana Granodiorite located on the southeast. The metamorphic condition of two pelitic rocks that occur in the muscovite–andalusite zone and sillimanite–K‐feldspar zone are estimated as 510 ±30 °C, 300 ±60 MPa and 720 ±30 °C, 620 ±60 MPa, respectively. Thermodynamic consideration reveals that use of the same geothermobarometer enables precise determination of the difference in pressure between the samples as 320 ±10 MPa. This indicates that the pelitic samples were metamorphosed at different depth by 11–12 km that is significantly larger than the geographic distance of 6.8 km between the sample localities. This also suggests that crustal thinning took place after the high‐T metamorphism. The high‐T metamorphic complex is, therefore, not of static contact metamorphism but of dynamic regional metamorphism. The present result combined with petrological and chronological similarities implies that this complex suffered the regional Ryoke metamorphism.  相似文献   

15.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

16.
Ultrahigh‐temperature (UHT) granulites in the South Altay orogenic belt of Northwestern China provide important clues for the lower crustal components and tectonic evolution of the Central Asian Orogenic Belt during the Paleozoic. In this paper, we studied whole‐rock geochemistry and mineral characteristics to understand the protolith and metamorphic evolution of the Altay UHT granulite. The Altay granulite shows negative discriminant function values (DF) of ?9.27 to ?3.95, indicating a sedimentary origin, probably an argillaceous rock. The peak metamorphic temperature–pressure conditions of 920–1010 °C and > 9 kbar were estimated from the geothermobarometry, together with the stability of spinel (low ZnO) + quartz and orthopyroxene (Al2O3 up to 9.2 wt.%) + sillimanite + quartz in the Altay UHT rock, indicate a UHT metamorphic condition has been achieved. Two stages of retrograde conditions are recognized in these rocks; the first is an isothermal decompression to approx. 750 °C at 5.2–5.8 kbar at the early stage, and the second is the cooling down to 520–550 °C at 4.8–5.2 kbar. Combined with previous study, the formation of the Altay UHT pelitic granulite with a clockwise retrograde P–T path is inferred to be related with collisional and accretional orogenic process between the Siberian and Kazakhstan–Junggar plates.  相似文献   

17.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

18.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

19.
Petrological modeling is a powerful technique to address different types of geological problems via phase-equilibria predictions at different pressure–temperature-composition conditions. Here, we show the versatility of this technique by (1) performing thermobarometrical calculations using phase equilibrium diagrams to explore the petrological evolution of high-pressure (HP) metabasites from the Renge and Sanbagawa belts, Japan and (2) forward-modeling the mineral–melt evolution of the subducted fresh and altered oceanic crust along the Nankai subduction zone geotherm at the Kii peninsula, Japan. In the first case, we selected three representative samples from these metamorphic belts: a glaucophane eclogite and a garnet glaucophane schist from the Renge belt (Omi area) and a quartz eclogite from the Sanbagawa belt (Besshi area). We calculated the peak metamorphic conditions at ~2.0–2.3 GPa and ~550–630 °C for the HP metabasites from the Renge belt, whereas for the quartz eclogite, the peak equilibrium conditions were calculated at 2.5–2.8 GPa and ~640–750 °C. According to our models, the quartz eclogite experienced partial melting after peak metamorphism. In terms of the petrological evolution of the subducted uppermost portion of the oceanic crust along the warm Nankai geotherm, our models show that fluid release occurs at ~20–60 km, likely promoting high pore-fluid pressure, and thus, seismicity at these depths; dehydration is controlled by chlorite breakdown. Our petrological models predict partial melting at >60 km, mainly driven by phengite and amphibole breakdown. According to our models, the melt proportion is relatively small, suggesting that slab anatexis is not an efficient mechanism for generating voluminous magmatism at these conditions. Modeled melt compositions correspond to high-SiO2 adakites; these are similar to compositions found in the Daisen and Sambe volcanoes, in southwest Japan, suggesting that the modeled melts may serve as an analog to explain adakite petrogenesis.  相似文献   

20.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号