首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
Cosmic-ray intensity data for the period 1964–1985 covering two solar cycles are used to investigate the solar activity behaviour in relation to cosmic-ray modulation. A detailed statistical analysis of them shows a large time-lag of about one and half years between cosmic-ray intensity and solar activity (as indicated by sunspot number, solar flares and high-speed solar-wind streams) during the 21st solar cycle appearing for a first time. This lag indicates the very high activity level of this solar cycle estimating the size of the modulating region to the unambiguous value of 180 AU. The account of the solar-wind speed in the 11-year variation significantly decreases the modulation region of cosmic-rays to the value of 40 AU.A comparison with the behaviour of the previous solar cycle establishes a distinction between even and odd solar cycles. This is explained in terms of different contributions of drift, convection and diffusion to the whole modulation mechanism during even and odd solar cycles.  相似文献   

2.
Vertical impacts on the Earth of asteroids 500-3000 km in diameter at 15 km/s have been numerically modelled using the hydrodynamic SOVA code. This code has been modified for the spherical system of coordinates well suited for simulations of very large impacts when the entire Earth is involved in motion. The simulations include cratering process, upward motion of deep mantle layers, fall of ejecta on the Earth, escape of matter to space, and formation of rock vapour atmospheres. The calculations were made for the period preceding disappearance of rock vapour atmospheres caused by radiation several years after the largest impacts. For very large vertical impacts at 15 km/s, escaping masses proved to be negligibly small. Quantities of kinetic, internal, potential, and radiated away energies are obtained as functions of time and space. After the impacts, a global layer of condensed ejecta covers the whole of the Earth's surface and the ejecta energy is sufficient to vaporise an ocean 3 km deep. The mass of rock vapour atmosphere is 10-23% of the impactor mass. This atmosphere has a greater mass than the water atmosphere if impactor is 2000 km in diameter or larger.  相似文献   

3.
From the monthly data of cosmic ray intensity (CRI), sunspot numbers (SSN) and solar flare index (SFI), an attempt has been made to study the relationship between CRI and solar activity (SA) parameters SSN and SFI. The correlation between SA parameters and CRI for different neutron monitoring stations having low, middle and high cut-off rigidity has been investigated. The anti-correlation between SA and CRI is found to exist with some time lag. Based on the method of minimizing correlation coefficient and time-delayed component method, the observed time-lag between SA parameters (SSN and SFI) and CRI has been found to be large for odd solar cycles in comparison to even solar cycles. The results of time-lag analysis between CRI and SSN and between CRI-SFI have also been compared. The findings of correlative study between CRI and SSN are in agreement with earlier results, while the CRI-SFI relationship provides new insights to understand the solar modulation of cosmic rays.  相似文献   

4.
The anomalously strong cyclonic activity in the North Indian Ocean (NIO) during the recent years led to a controversy about the impact of global warming on cyclonic activity in the NIO Tropical Easterly Jet (TEJ) plays an important role in the formation of tropical cyclones (TC) over the NIO during summer monsoon season, but in the recent year it is decreasing. This is because of higher warming on the equatorial side of the TEJ than on the northern side, although on both sides a significant warming trend is seen. This warming seems to be a part of the general warming trend known to be occurring since mid 1970s. The vertical wind shear shows a positive correlation with the number of severe storms suggesting that a decrease in easterly shear is favourable for the formation of severe storms. Here I show that the sea surface temperature change over a long period is a key parameter to control the vertical wind shear over the NIO, an important quantity for cyclone activity. The stronger warming of the tropical North Indian Ocean during recent years drove reduced vertical wind shear Thus if the present decreasing trend of TEJ intensity continues, which is highly probable in view of presently occurring green-house warming, there is a strong likelihood of the formation of tropical cyclones of hurricane intensity even during the summer monsoon. Presently the intense systems are known to form only in the pre and post-monsoon seasons, when the vertical wind shear is small.  相似文献   

5.
Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three?to?five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.  相似文献   

6.
We study galactic cosmic ray (GCR) modulation during solar cycle 24. For this study we utilize neutron monitor data together with sunspot number (SSN) and 10.7 cm solar radio flux (SRF) data. We plot hysteresis curve between the GCR intensity and SSN, and GCR intensity and SRF. We performed time-lag correlation analysis to determine the time lag between GCR intensity and solar activity parameters. The time lag is determined not only for the whole solar cycle, but also during the two polarity states of the heliosphere (A<0 and A>0) in solar cycle 24. We notice differences in time lags during two polarity epochs of the solar cycle. We discuss these differences in the light of existing modulation models. We compare the results of this very weak solar activity cycle with the corresponding results reported for the previous comparatively more active solar cycles.  相似文献   

7.
Application of analyzing time-series into trigonometric series allows the investigation of cosmic-ray intensity variations in a wide periodicity range from a few months to 10 or even more years. By this technique, the amplitude and the phase of all observed fluctuations can be given. For this purpose, cosmic-ray data of five ground-based neutron-monitor stations for the time interval 1964–1985 have been analyzed.Two kinds of periodicities appeared in these data. The first one includes occurrences at periods greater than two years, as the ones of 10.41, 8.41, and 5.50 yr, which differ very little in amplitude from station to station but are similar in phase, and the second one includes periodicities smaller than two years (24, 12, 8, and 6 months) which are similar in all stations but appeared in variable time intervals.The possible origin of each observed variation due to a contribution either of cosmic-ray interaction in the upper atmosphere or to the solar dynamics is discussed.  相似文献   

8.
Investigations during the last 30 yr of the relationship between the green emission line corona and geomagnetism have yielded contradictory results. The papers on this subject can be separated into 2 groups; (a) papers reporting a negative correlation between green line intensity and geomagnetic activity, and (b) papers reporting a positive correlation. The negative correlation seems to be the one better supported by solar wind theory and observations. It implies that solar active regions are the base of low expansion speeds, whereas quasistationary high-speed solar plasma streams originate from regions of low density and open magnetic field structuresIn the present paper we have re-examined some of the analyses described in the group (b) papers. It is found that instead of indicating a positive correlation, these analyses in fact favour the negative correlation. Thus there does not appear to be any conflict at all between the different papers. The interpretation in favour of the positive correlation seems to be due to some accident of perspective having obscured the true connection  相似文献   

9.
10.
S. Bravo  J. A. Otaola 《Solar physics》1989,122(2):335-343
Twenty years ago, Ohl (1966, 1968) found a correlation between geomagnetic activity around the minimum of the solar cycle and the Wolf sunspot number in the maximum of the following solar cycle. In this paper we shall show that such a relation means indeed a relation between the polar coronal holes area around the minimum of the solar cycle and the sunspot number in the maximum of the next. In fact, a very high positive correlation exists between the temporal evolution of the size of polar coronal holes and the Wolf sunspot number 6.3. years later.  相似文献   

11.
A complete data set of globally distributed shallow (h , 60 Km) earthquakes have been used for first time to test the possible existence of periodicities in the seismic energy release. Only main shocks of magnitude,M 7.0 were considered, which occurred in the whole Earth during 1898–1985. These magnitudes are converted in seismic energy, which is released during the occurrence of earthquakes, through Bath's formula. The detection of such kind of periodicities is important in seismology, because these patterns may lead to the prediction of large earthquakes. Statistical techniques, such as Maximum Entropy (ME), and two Fourier approaches, the Fast Fourier Transform (FFT) and Power Spectrum (PS) of truncated subrecords of the whole time series have been applied to examine the possible existence of such periodicities in seismic energy release. Furthermore, the even-spacing technique is used to validate our results and a type-curve has been constructed for the data set.The results exhibit a network of periodicities with predominant periods at 3(±0.5), 4.5, 6.5, 8–9, 14–20, and 31–34 years. Some periods were occasionally interrupted. The latter implies that our time-series is not stationary, in that, the spectral peaks drift when the data are viewed through different time windows. The fact that the signal is weak and embedded in less accurate older data could contribute to this effect. The question of stability/validity of the apparently cyclic behaviour of the annual global seismic energy release, is one which requires further investigation.  相似文献   

12.
We make a detailed analysis of cross-correlation and time-lag between monthly data of galactic cosmic rays (GCRs) intensity and different solar activity indices (e.g., sunspot number, sunspot area, green coronal Fe line and 10.7 cm solar radio flux) during 19–23 solar cycles. GCRs time-series data from Kiel neutron monitor station and solar data from the last 50 years period, covering five solar cycles (19–23), and alternating solar polarity states (i.e., five A < 0 and four A > 0) have been investigated. We find a clear asymmetry in the cross-correlation between GCRs and solar activity indicators for both odd and even-numbered solar cycles. The time-lags between GCRs and solar parameters are found different in different solar cycles as well as in the opposite polarity states (A < 0 and A > 0) within the same solar cycle. Possible explanations of the observed results are discussed in light of modulation models, including drift effects.  相似文献   

13.
Mendoza  Blanca 《Solar physics》1999,188(2):237-243
A positive correlation is suggested between solar rotation rate and solar cycle length for cycles 12 to 20. This result seems to be opposite to recent observations in solar-type stars and the Sun and yields inverse correlations between cycle lengths and chromospheric activity, but it agrees with previous work with solar-type stars and the Sun suggesting a positive correlation between cycle length and rotation rate. Estimates of solar cycle length for the Maunder minimum suggest a length 17 yr.  相似文献   

14.
Although now four seismic stations are operating on the Moon the determination of epicenters and mechanisms of moonquakes is still problematic. On the Moon no decoupling of compressional, transverse, and surface waves takes place, no clear first arrivals can be found, and coherence between vertical and horizontal components of a seismograph station is poor. New methods of locating epicenters are presented. They consist of a statistical analysis of the first arrival groups and correlation of components of tidal forces to arrival times in relation to perigee. Certain regions of the Moon, as for instance the Eastern boundary of Mare Nubium, can be considered highly suspicious as possible source region; others have to be ruled out as here triggering by tidal stress seems highly improbable. From various possible mechanisms a connection with a degassing of the Moon seems to offer an acceptable explanation.  相似文献   

15.
王婕  王建  王琳琳  孙威  肖振宇  张昊  梁中 《天文学报》2022,63(3):34-105
研究发现,太阳自转速率的变化与太阳活动之间存在一定的联系,但是不同学者的研究结论存在着矛盾:有的认为两者为正相关,而有的却认为是负相关.究竟两者之间是什么关系,需要做进一步深入的分析.利用EEMD (Ensemble Empirical Mode Decomposition)等方法对太阳自转速率和太阳黑子数据序列进行相关关系以及相位关系的计算和分析,以探讨太阳自转速率变化与太阳活动之间的关系.研究发现:两者的长期趋势项分量呈显著负相关;在11 yr左右周期分量上,观测到的太阳自转速率滞后太阳黑子的变化约2 yr时,呈显著负相关关系,超前3 yr时呈现次显著的正相关;对太阳活动第12–23周各周内部太阳黑子与太阳自转速率的相关分析表明,两者的关系比较复杂,但负相关关系更为显著.这为进一步理解太阳活动变化与太阳自转速率变化之间的成因联系提供了新的依据.  相似文献   

16.
P. N. Pathak 《Solar physics》1971,20(2):462-473
Using solar wind velocity data obtained by Mariner-2 and IMP-1 spacecrafts, an attempt has been made to study its correlation with 5303 coronal intensity. It is shown that the long-lasting regions of enhanced 5303 intensity in the solar corona are well correlated with recurrent streams of solar wind having high velocity. The time-lag between the central meridian passage (CMP) of the coronal features and the detection of the solar wind streams at the spacecraft is found to be smaller than that implied by a radial solar wind. Significant positive correlations for Mariner-2 data are obtained for coronal intensity at heliolatitudes 5°S–10°N with a time-lag of + 2 days while for IMP-1 data, high positive correlations are obtained for the southern heliolatitudes (10°–25°S) without any time-lag. It should be noted that the average heliographic latitudes for Mariner-2 and IMP-1 were 4°N and 4°S respectively during the periods covered by the present analysis. The implications of the results are discussed.Presented at IUCSTP Symposium on Solar-Terrestrial Physics, Leningrad, May 1970.  相似文献   

17.
We present discovery images, together with follow-up imaging and spectroscopy, of two large-separation gravitational lenses found by our survey for wide arcs [the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY)]. The survey exploits the multicolour photometry of the Sloan Digital Sky Survey to find multiple blue components around red galaxies. CASSOWARY 2 (or 'the Cheshire Cat') is composed of two massive early-type galaxies at   z = 0.426  and 0.432, respectively, lensing two background sources, the first a star-forming galaxy at   z = 0.97  and the second a high -redshift galaxy  ( z > 1.4)  . There are at least three images of the former source and probably four or more of the latter, arranged in two giant arcs. The mass enclosed within the larger arc of radius ∼11 arcsec is  ∼33 × 1012 M  . CASSOWARY 3 comprises an arc of three bright images of a   z = 0.725  source, lensed by a foreground elliptical at   z = 0.274  . The radius of the arc is ∼4 arcsec and the enclosed mass is  ∼2.5 × 1012 M  . Together with earlier discoveries like the Cosmic Horseshoe and the 8 o'clock Arc, these new systems, with separations intermediate between the arcsecond-separation lenses of typical strong galaxy lensing and arcminute-separation cluster lenses, probe the very high end of the galaxy mass function.  相似文献   

18.
When the observational data are not enough to compute a meaningful orbit for an asteroid/comet we can represent the data with an attributable, i.e., two angles and their time derivatives. The undetermined variables range and range rate span an admissible region of Solar System orbits, which can be sampled by a set of Virtual Asteroids (VAs) selected by means of an optimal triangulation [Milani, A., Gronchi, G.F., de' Michieli Vitturi, M., Kne?evi?, Z., 2004. Celest. Mech. Dyn. Astron. 90, 59-87]. The attributable 4 coordinates are the result of a fit and they have an uncertainty, represented by a covariance matrix. Two short arcs of observations, represented by two attributables, can be linked by considering for each VA (in the admissible region of the first arc) the covariance matrix for the prediction at the time of the second arc, and by comparing it with the attributable of the second arc with its own covariance. By defining an identification penalty we can select the VAs allowing to fit together both arcs and compute a preliminary orbit. Two attributables may not be enough to compute an orbit with convergent differential corrections. Thus the preliminary orbit is used in a constrained differential correction, providing solutions along the Line Of Variation which can be used as second generation VAs to further predict the observations at the time of a third arc. In general the identification with a third arc will ensure a well determined orbit, to which additional sets of observations can be attributed. To test these algorithms we use a large scale simulation and measure the completeness, the reliability and the efficiency of the overall procedure to build up orbits by accumulating identifications. Under the conditions expected for the next generation asteroid surveys, the methods developed in this and in the preceding papers are efficient enough to be used as primary identification methods, with very good results. One important property is that the completeness in finding the possible identifications is as good for comparatively rare orbits, such as the ones of Near-Earth Objects, as for main belt orbits.  相似文献   

19.
We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998?–?2012 and 1975?–?1983, respectively. The data mainly belong to solar cycles 23 (1996?–?2008) and 21 (1976?–?1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance (D), which is defined using the Kullback–Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.  相似文献   

20.
把地球作为一个开放系统,本文分析了不同地域范围的地震活动和太阳活动的关系,发现不同地域的地震活动也存在着一个大约11年的周期,这个周期可能与太阳活动的11年左右周期有关,但地震周期的峰值对应于太阳活动的下降段。它们的关系是负相关关系。本文进一步着重分析了地震活动与高速太阳风粒子流和宇宙线高能粒子流的关系,发现它们之间存在着一个信度水平很高的正相关。这样,我们可以推测太阳活动可能是通过调制到达地球的高能粒子流进而调制地震活动的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号