首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

2.
Faria  H. H.  Echer  E.  Rigozo  N. R.  Vieira  L. E. A.  Nordemann  D. J. R.  Prestes  A. 《Solar physics》2004,223(1-2):305-318
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

3.
Vaquero  J.M.  Gallego  M.C.  Sánchez-Bajo  F. 《Solar physics》2004,221(1):179-189
In this work, a procedure to elaborate a homogeneous sunspot area series using the Royal Greenwich Observatory/USAF/NOAA data (from 1874 to the present) and the De la Rue and co-workers data (from 1832 to 1868) is presented. These two data series correspond to time intervals that do not overlap and a direct comparison between them could not be carried out. We used the International Sunspot Number (Ri) and the Group Sunspot Number (RG) as a link between the two original series. Thus, two homogeneous sunspot area series have been built using a simple mathematic procedure based on linear relations.  相似文献   

4.
In this work, the evolution of the relationship between Solar Cycle Length of solar cycle n (SCL n ) and Solar Cycle Amplitude of the solar cycle n+1 (SCA n+1) is studied by using the R Z and R G sunspot numbers. We conclude that this relationship is only strongly significant in a statistical sense during the first half of the historical record of R Z sunspot number whereas it is considerably less significant for the R G sunspot number. In this sense we assert that these simple lagged relationships should be avoided as a valid method to predict the following solar activity amplitude.  相似文献   

5.
Vaquero  J.M. 《Solar physics》2004,219(2):379-384
The solar observations performed by the Mexican astronomer J. A. Alzate during the year 1784 are analysed in this work. These observations are very valuable for the reconstruction of solar activity because Hoyt and Schatten (1998), who defined the Group Sunspot Number (R G), only found five observations during this year — all performed by J. C. Staudacher. Using conjointly the data provided by Alzate and Staudacher for 1784, one can determine a value of R G equal to 0.3±0.1 with eighty records for that year.  相似文献   

6.
Group Sunspot Numbers: A New Solar Activity Reconstruction   总被引:1,自引:0,他引:1  
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

7.
In this paper, we construct a time series known as the Group Sunspot Number. The Group Sunspot Number is designed to be more internally self-consistent (i.e., less dependent upon seeing the tiniest spots) and less noisy than the Wolf Sunspot Number. It uses the number of sunspot groups observed, rather than groups and individual sunspots. Daily, monthly, and yearly means are derived from 1610 to the present. The Group Sunspot Numbers use 65941 observations from 117 observers active before 1874 that were not used by Wolf in constructing his time series. Hence, we have calculated daily values of solar activity on 111358 days for 1610–1995, compared to 66168 days for the Wolf Sunspot Numbers. The Group Sunspot Numbers also have estimates of their random and systematic errors tabulated. The generation and preliminary analysis of the Group Sunspot Numbers allow us to make several conclusions: (1) Solar activity before 1882 is lower than generally assumed and consequently solar activity in the last few decades is higher than it has been for several centuries. (2) There was a solar activity peak in 1801 and not 1805 so there is no long anomalous cycle of 17 years as reported in the Wolf Sunspot Numbers. The longest cycle now lasts no more than 15 years. (3) The Wolf Sunspot Numbers have many inhomogeneities in them arising from observer noise and this noise affects the daily, monthly, and yearly means. The Group Sunspot Numbers also have observer noise, but it is considerably less than the noise in the Wolf Sunspot Numbers. The Group Sunspot Number is designed to be similar to the Wolf Sunspot Number, but, even if both indices had perfect inputs, some differences are expected, primarily in the daily values.  相似文献   

8.
9.
Since January 1981, the Royal Observatory of Belgium (ROB) has operated the Sunspot Index Data Center (SIDC), the World Data Center for the Sunspot Index. From 2000, the SIDC obtained the status of Regional Warning Center (RWC) of the International Space Environment Service (ISES) and became the “Solar Influences Data analysis Center”. As a data analysis service of the Federation of Astronomical and Geophysical data analysis Services (FAGS), the SIDC collects monthly observations from worldwide stations in order to calculate the International Sunspot Number, R i . The center broadcasts the daily, monthly, yearly sunspot numbers, with middle-range predictions (up to 12 months). Since August 1992, hemispheric sunspot numbers are also provided. Deceased.  相似文献   

10.
J. Javaraiah 《Solar physics》2012,281(2):827-837
We have analyzed the combined Greenwich and Solar Optical Observing Network (SOON) sunspot group data during the period of 1874??C?2011 and determined variations in the annual numbers (counts) of the small (maximum area A M<100 millionth of solar hemisphere, msh), large (100??A M<300?msh), and big (A M??300?msh) spot groups. We found that the amplitude of an even-numbered cycle of the number of large groups is smaller than that of its immediately following odd-numbered cycle. This is consistent with the well known Gnevyshev and Ohl rule (G?CO rule) of solar cycles, generally described by using the Zurich sunspot number (R Z). During cycles 12??C?21 the G?CO rule holds good for the variation in the number of small groups also, but it is violated by cycle pair (22, 23) as in the case of R Z. This behavior of the variations in the small groups is largely responsible for the anomalous behavior of R Z in cycle pair (22, 23). It is also found that the amplitude of an odd-numbered cycle of the number of small groups is larger than that of its immediately following even-numbered cycle. This might be called the ??reverse G?CO rule??. In the case of the number of the big groups, both cycle pairs (12, 13) and (22, 23) violated the G?CO rule. In many cycles the positions of the peaks of the small, large, and big groups are different, and considerably differ with respect to the corresponding positions of the R Z peaks. In the case of cycle?23, the corresponding cycles of the small and large groups are largely symmetric/less asymmetric (the Waldmeier effect is weak/absent) with their maxima taking place two years later than that of R Z. The corresponding cycle of the big groups is more asymmetric (strong Waldmeier effect) with its maximum epoch taking place at the same time as that of R Z.  相似文献   

11.
An Estimate for the Size of Sunspot Cycle 24   总被引:1,自引:0,他引:1  
R. P. Kane 《Solar physics》2013,282(1):87-90
For the sunspot cycles in the modern era (cycle?10 to the present), the ratio of R Z(max)/R Z(36th month) equals 1.26±0.22, where R Z(max) is the maximum amplitude of the sunspot cycle?using smoothed monthly mean sunspot number and R Z(36th month) is the smoothed monthly mean sunspot number 36 months after cycle?minimum. For the current sunspot cycle?24, the 36th month following the cycle?minimum occurred in November 2011, measuring?61.1. Hence, cycle?24 likely will have a maximum amplitude of about 77.0±13.4 (the one-sigma prediction interval), a value well below the average R Z(max) for the modern era sunspot cycles (about 119.7±39.5).  相似文献   

12.
Continuous wavelet transform and cross‐wavelet transform have been used to investigate the phase periodicity and synchrony of the monthly mean Wolf (Rz) and group (Rg) sunspot numbers during the period of June 1795 to December 1995. The Schwabe cycle is the only one common period in Rg and Rz, but it is not well‐defined in case of cycles 5–7 of Rg and in case of cycles 5 and 6 of Rz. In fact, the Schwabe period is slightly different in Rg and Rz before cycle 12, but from cycle 12 onwards it is almost the same for the two time series. Asynchrony of the two time series is more obviously seen in cycles 5 and 6 than in the following cycles, and usually more obviously seen around the maximum time of a cycle than during the rest of the cycle. Rg is found to fit Rz better in both amplitudes and peak epoch during the minimum time time of a solar cycle than during the maximum time of the cycle, which should be caused by their different definition, and around the maximum time of a cycle, Rg is usually less than Rz. Asynchrony of Rg and Rz should somewhat agree with different sunspot cycle characteristics exhibited by themselves (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
New electron excitation rates for O vii calculated by Tayal and Kingston using the R-matrix method are used to determine theoretical emission line strengths. Values of the electron density sensitive ratio R (forbidden line to intercombination line) are found to be very similar to those deduced by other authors. However the temperature sensitive ratios G (intercombination plus forbidden lines to resonance line) are approximately 20% lower than the best previous estimates. The observed value of G for solar active regions (G = 1.0 ± 0.1) predicts an electron temperature in the range 1.1 × 106 K < T e < 1.8 × 106 K, which overlaps that of maximum O vii emissivity, T M = 1.8 × 106 K. In addition, the theoretical G versus T e curve is in excellent agreement with that observed for a Tokamak plasma.  相似文献   

14.
Kakad  B. 《Solar physics》2011,270(1):393-406
The purpose of the present study is to develop an empirical model based on precursors in the preceding solar cycle that can be used to forecast the peak sunspot number and ascent time of the next solar cycle. Statistical parameters are derived for each solar cycle using “Monthly” and “Monthly smoothed” (SSN) data of international sunspot number (R i). Primarily the variability in monthly sunspot number during different phases of the solar cycle is considered along with other statistical parameters that are computed using solar cycle characteristics, like ascent time, peak sunspot number and the length of the solar cycle. Using these statistical parameters, two mathematical formulae are developed to compute the quantities [Q C] n and [L] n for each nth solar cycle. It is found that the peak sunspot number and ascent time of the n+1th solar cycle correlates well with the parameters [Q C] n and [L] n /[S Max] n+1 and gives a correlation coefficient of 0.97 and 0.92, respectively. Empirical relations are obtained using least square fitting, which relates [S Max] n+1 with [Q C] n and [T a] n+1 with [L] n /[S Max] n+1. These relations predict a peak of 74±10 in monthly smoothed sunspot number and an ascent time of 4.9±0.4 years for Solar Cycle 24, when November 2008 is considered as the start time for this cycle. Three different methods, which are commonly used to define solar cycle characteristics are used and mathematical relations developed for forecasting peak sunspot number and ascent time of the upcoming solar cycle, are examined separately.  相似文献   

15.
We investigate numerically the chemodynamical evolution of major disc–disc galaxy mergers in order to explore the origin of the mass-dependent chemical, photometric and spectroscopic properties observed in elliptical galaxies. We investigate especially the dependence of the fundamental properties on merger progenitor disc mass (M d). Three main results are obtained in this study:– More massive (luminous) ellipticals formed by galaxy mergers between more massive spirals have higher metallicity (Z) and thus show redder colours; the typical metallicity ranges from ∼ 1.0 solar abundance (Z∼ 0.02) for ellipticals formed by mergers with M d = 1010 M to ∼ 2.0 solar (Z∼ 0.04) for those with M d= 1012 M .– Both the Mg2 line index in the central part of ellipticals (R ≤ 0.1 R e) and the radial gradient of Mg2 (δ Mg2 / δ log R) are more likely to be larger for massive ellipticals. δ Mg2 / δ log R correlates reasonably well with the central Mg2 in ellipticals. For most of the present merger models, ellipticals show a positive radial gradient of the Hβ line index. – Both M/L B and M/L K (where M, L B, and L K are the total stellar mass of galaxy mergers, the B-band and the K-band luminosities, respectively) depend on galactic mass in such a way that more massive ellipticals have larger M/L B and smaller M/L K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
R. P. Kane 《Solar physics》2007,246(2):471-485
Many methods of predictions of sunspot maximum number use data before or at the preceding sunspot minimum to correlate with the following sunspot maximum of the same cycle, which occurs a few years later. Kane and Trivedi (Solar Phys. 68, 135, 1980) found that correlations of R z(max) (the maximum in the 12-month running means of sunspot number R z) with R z(min) (the minimum in the 12-month running means of sunspot number R z) in the solar latitude belt 20° – 40°, particularly in the southern hemisphere, exceeded 0.6 and was still higher (0.86) for the narrower belt > 30° S. Recently, Javaraiah (Mon. Not. Roy. Astron. Soc. 377, L34, 2007) studied the relationship of sunspot areas at different solar latitudes and reported correlations 0.95 – 0.97 between minima and maxima of sunspot areas at low latitudes and sunspot maxima of the next cycle, and predictions could be made with an antecedence of more than 11 years. For the present study, we selected another parameter, namely, SGN, the sunspot group number (irrespective of their areas) and found that SGN(min) during a sunspot minimum year at latitudes > 30° S had a correlation +0.78±0.11 with the sunspot number R z(max) of the same cycle. Also, the SGN during a sunspot minimum year in the latitude belt (10° – 30° N) had a correlation +0.87±0.07 with the sunspot number R z(max) of the next cycle. We obtain an appropriate regression equation, from which our prediction for the coming cycle 24 is R z(max )=129.7±16.3.  相似文献   

17.
We present three sets of observations of n = 1 to n = 2 lines due to helium-like aluminium (Alxii), made during two solar flares (25 August, 1980 and 19 October, 1986), using the X-Ray Polychromator on the SMM satellite. The observed temperature-sensitive line ratio G is shown to be consistent with the close-coupling calculations of Keenan and McCann (1987), although the ratio R, which is both temperature and density-sensitive for lower-Z elements, is not sufficiently well determined from these data to say more than that the observed values of R are not inconsistent with the theoretical calculations. This region of the spectrum also includes the helium-like magnesium (Mgxi) 11 S - 31 P line, and it is shown that the ratio of this line to the Alxii resonance (11 S - 21 P) line is a more sensitive indicator of electron temperature than are the Alxii G and R ratios. We demonstrate that the three ratios may be used together in order to derive values of emission measure, electron temperature and electron density during these flares.  相似文献   

18.
A new prediction technique based on logarithmic values is proposed to predict the maximum amplitude (R m) of a solar cycle from the preceding minimum aa geomagnetic index (aa min). The correlation between lnR m and lnaa min (r=0.92) is slightly stronger than that between R m and aa min (r=0.90). From this method, cycle 24 is predicted to have a peak size of R m(24)=81.7(1±13.2%). If the suggested error in aa (3 nT) before 1957 is corrected, the correlation coefficient between R m and aa min (r=0.94) will be slightly higher, and the peak of cycle 24 is predicted much lower, R m(24)=52.5±13.1. Therefore, the prediction of R m based on the relationship between R m and aa min depends greatly on the accurate measurement of aa.  相似文献   

19.
Because of the bimodal distribution of sunspot cycle periods, the Hale cycle (or double sunspot cycle) should show evidence of modulation between 20 and 24 yr, with the Hale cycle having an average length of about 22 yr. Indeed, such a modulation is observed. Comparison of consecutive pairs of cycles strongly suggests that even-numbered cycles are preferentially paired with odd-numbered following cycles. Systematic variations are hinted in both the Hale cycle period and R sum (the sum of monthly mean sunspot numbers over consecutively paired sunspot cycles). The preferred even-odd cycle pairing suggests that cycles 22 and 23 form a new Hale cycle pair (Hale cycle 12), that cycle 23 will be larger than cycle 22 (in terms of R M, the maximum smoothed sunspot number, and of the individual cycle value of R sum), and that the length of Hale cycle 12 will be longer than 22 yr. Because of the strong correlation (r = 0.95) between individual sunspot cycle values of R sum and R M, having a good estimate of R Mfor the present sunspot cycle (22) allows one to predict its R sum, which further allows an estimation of both R Mand R sum for cycle 23 and an estimation of R sum for Hale cycle 12. Based on Wilson's bivariate fit (r = 0.98), sunspot cycle 22 should have an R Mequal to 144.4 ± 27.3 (at the 3- level), implying that its R sum should be about 8600 ± 2200; such values imply that sunspot cycle 23 should have an R sum of about 10500 ± 2000 and an R Mof about 175 ± 40, and that Hale cycle 12 should have an R sum of about 19100 ± 3000.  相似文献   

20.
Periodicities in the occurrence rate of solar proton events   总被引:1,自引:0,他引:1  
Power spectral analyses of the time series of solar proton events during the past three solar cycles reveal a periodicity around 154 days. This feature is prominent in all of the cycles combined, cycles 19 and 21 individually but is only weak in cycle 20. These results are consistent with the presence of similar periodicities between 152 and 155 days in the occurrence rate of major solar flares, the sunspot blocking function (P s ), the 10.7 cm radio flux (F 10.7) and the sunspot number (R z ). This suggests that the circa 154-days periodicity may be a fundamental characteristic of the Sun. Periods around 50–52 days are also found in the combined data set and in the three individual cycles in general agreement with the detection of this periodicity in major flares in cycle 19 and inP s ,F 10.7, andR z in cycle 21. The cause of the 155 day period remains unknown. The spectra contain lines (or show power at frequencies) consistent with a model in which the periodicity is caused by differential rotation of active zones and a model in which it is related to beat frequencies between solar oscillations, as proposed by Wolff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号