共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The world’s largest mangrove ecosystem, the Sunderbans is experiencing multidimensional threats of degradation. The present study was aimed to understand these problems and search for proper remedies by applying suitable remote sensing technologies. South-western parts of Indian Sunderbans Biosphere Reserve had been chosen for assessment of land use/land cover changes in between 1975 and 2006 by using multitemporal Landsat data. Results indicated considerable reduction of open mangrove stands and associated biodiversity mainly in the forest-habitation interference zones of Sunderbans. On the contrary, increase in the coverage of dense mangroves in the reserved forests had been observed indicating the existence of proper centralized management regimes. Overall, a cumulative loss of approximately 0.42% of its original mangrove cover in between 1975 and 2006 had been estimated for this part of the Sunderbans which was at parity with the findings of other studies in the Sunderbans or similar mangrove ecosystems of the tropics. Expansion of non agricultural lands in the last two decades was found to be related with the growth of new settlements, tourism infrastructure, and facilities. This transformation was attributed to the shifting of local peoples’ interest from traditional forestry and subsistence farming towards alternative occupations like shrimp culture, coastal tourism, and commercial fishing although environmentally hazardous livelihood activities like collection of prawn seeds along the riverbanks were still persistent. 相似文献
4.
5.
四种基于像元的地表覆盖变化检测方法比较 总被引:1,自引:0,他引:1
目前遥感影像变化检测方法很多,但各种方法的适用性各不相同。鉴于灰度差值、NDVI差值、灰度比值、主成分分析法在地表覆盖变化检测中应用广泛,文章从数据更新的角度对这4种方法进行了比较;在分析比较这4种方法的单一变化检测精度、检测结果的相同性、相异性的基础上探索了适合于30m分辨率TM地表覆盖变化检测的组合方法。实验结果表明,在地表覆盖变化检测中,有效组合方法能够取得比单一变化检测方法更好的效果;比值法并NDVI差值法并PCA差异法的检测结果中包含了4种单一检测方法所检测出的全部变化像元,达到了最高的生产者精度,比较适合于地表覆盖数据更新制图应用。 相似文献
6.
Andrey N. Petrov 《国际地球制图》2013,28(3):223-240
This study focuses on the spatiotemporal dynamics of agricultural lands and differences in rapidly developing urban and declining rural counties in Iowa, USA between 1984 and 2000. The study presents an analysis of land-cover maps derived from Landsat TM and ETM+ satellite imagery and different landscape metrics using FRAGSTATS and IDRISI software. The study provides evidence of both loss of croplands and change in fragmentation between 1984 and 2000. Fragmentation in agriculture-dominated areas increased with the development of urban centres and diversification of land uses. Fragmentation of landscapes, including agricultural land, was found to be higher in the urbanized counties, but was stable or even declined over time in these counties. In contrast, in the context of remote rural areas, agricultural landscapes experienced rapid increase in fragmentation and farmland loss. The urban–rural gradient analysis used in this study showed that the highest fragmentation occurred on the city edges. These findings suggest that farmland fragmentation is a complex process associated with socio-economic trends at regional and local scales. In addition, socio-economic determinants of landscape fragmentation differ between areas with diverging development trajectories. Intensive cropland fragmentation in remote agricultural regions, detected by this research, should be further studied and its possible effects on both agricultural productivity and biodiversity should be carefully considered. 相似文献
7.
Integrating multiple images with artificial neural networks (ANN) improves classification accuracy. ANN performance is sensitive to training datasets. Complexity and errors compound when merging multiple data, pointing to needs for new techniques. Kohonen's self-organizing mapping (KSOM) neural network was adapted as an automated data selector (ADS) to replace manual training data processes. The multilayer perceptron (MLP) network was then trained using automatically extracted datasets and used for classification. Two hypotheses were tested: ADS adapted from the KSOM network provides adequate and reliable training datasets, improving MLP classification performance; and fusion of Landsat thematic mapper (TM) and SPOT images using the modified ANN approach increases accuracy. ADS adapted from the KSOM network improved training data quality and increased classification accuracy and efficiency. Fusion of compatible multiple data can improve performance if appropriate training datasets are collected. This proved to be a viable classification scheme particularly where acquiring sufficient and reliable training datasets is difficult. 相似文献
8.
ABSTRACTThe need and critical importance of global land cover and change information has been well recognized. Although rich collection of such information has been made available, the lack of necessary information services to support its easy access, analysis and validation makes it difficult to find, evaluate, select and reuse them through well-designed workflows. Aiming at promoting the development of the needed global land cover information services, this paper presents a conceptual framework for developing a Collaborative Global Land Cover Information Service (CoGland), followed by discussions on its implementation strategies. The framework supports connected and shared land cover and change web services around the world to address resource sharing, community service and cross-board collaboration needs. CoGland can benefit several recent international initiatives such as Future Earth, and many societal benefit areas. The paper further proposes that CoGland be developed within the framework of the Group on Earth Observations with the support of a number of key organizations such as the United Nations Expert Committee on Global Geospatial Information Management, the International Society for Photogrammetry and Remote Sensing, and International Society of Digital Earth. It is hoped that this paper can serve as a starting point for further discussions on CoGland developments. 相似文献
9.
10.
11.
遥感时间序列影像变化检测研究进展 总被引:2,自引:0,他引:2
同一区域、不同时期大量历史数据的积累,以及同一区域能够方便地获取高时间分辨率遥感数据,使遥感时间序列影像变化检测成为近年来遥感技术与应用的研究热点。本文系统总结和评述了当前遥感时间序列影像变化检测的相关研究进展和应用状况,在阐明遥感时间序列分析的意义,以及时间序列影像在变化检测中的优势的基础上,从非遥感领域时间序列变化检测方法出发,针对遥感时间序列影像变化检测的需求,明确和归纳了遥感时间序列变化检测的问题与类型,并对当前最新研究进行了综述,总结了各种方法的优点与不足,重点介绍了基于经验模态分解的遥感时间序列影像异常信息检测方法和基于隐马尔可夫模型的土地利用/覆盖变化检测方法,以期能够为相关研究提供参考。最后总结了该研究领域的发展趋势和存在问题,并对今后的研究工作和未来发展方向进行了展望。 相似文献
12.
Sandeep Maithani 《国际地球制图》2015,30(2):163-185
Land cover transformation is one of the foremost aspects of human-induced environmental change, having an extensive history dating back to antiquity. The present study aims to simulate the process of land cover change based on different policy-based scenarios so as to provide a basis for sustainable development in Doon valley, India. For this purpose, an artificial neural network-based spatial predictive model was developed for the Doon valley. The predictive model generated future land cover patterns under three policy scenarios, i.e. baseline scenario, compact growth scenario and hierarchical growth scenario (HGS). The simulated land cover patterns mirror where land cover patterns are headed in the valley by year 2021. The result suggests that unabated continuation of the present pattern of land cover transformation will result in a regional imbalance. However, this skewed development can be corrected by altering the current growth trend as revealed in the compact growth and HGSs. 相似文献
13.
Sergio Colombo Mario Chica-Olmo Francisco Abarca Hugh Eva 《ISPRS Journal of Photogrammetry and Remote Sensing》2004,58(5-6):330-341
Tropical forest mapping is one of the major environmental concerns at global and regional scales in which remote sensing techniques are firmly involved. This study examines the use of the variogram function to analyse forest cover fragmentation at different image scales. Two main aspects are considered here: (1) analysis of the spatial variability structure of the forest cover observed at three different scales using fine, medium and coarse spatial resolution images; and (2) the study of the relationship between rescaled images from the finest spatial resolution and those of the medium and coarse spatial resolutions. Both aspects are analysed using the variogram function as a basic tool to calculate and interpret the spatial variability of the forest cover. An example is presented for a Brazilian tropical forest zone using satellite images of different spatial resolutions acquired by Landsat TM (30 m), Resurs MSU (160 m) and ERS ATSR (1000 m). The results of this study contribute to establishing a suitable spatial resolution of remotely sensed data for tropical forest cover monitoring. 相似文献
14.
Detecting soil salinity changes and its impact on vegetation cover are necessary to understand the relationships between these changes in vegetation cover. This study aims to determine the changes in soil salinity and vegetation cover in Al Hassa Oasis over the past 28 years and investigates whether the salinity change causing the change in vegetation cover. Landsat time series data of years 1985, 2000 and 2013 were used to generate Normalized Difference Vegetation Index (NDVI) and Soil Salinity Index (SI) images, which were then used in image differencing to identify vegetation and salinity change/no-change for two periods. Soil salinity during 2000–2013 exhibits much higher increase compared to 1985–2000, while the vegetation cover declined to 6.31% for the same period. Additionally, highly significant (p < 0.0001) negative relationships found between the NDVI and SI differencing images, confirmed the potential long-term linkage between the changes in soil salinity and vegetation cover. 相似文献
15.
16.
The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008–2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland. 相似文献
17.
Diwakar Paudel Jay Krishna Thakur Sudhir Kumar Singh Prashant K. Srivastava 《国际地球制图》2015,30(2):218-241
Soil is a vital part of the natural environment and is always responding to changes in environmental factors, along with the influences of anthropogenic factors and land use changes. The long-term change in soil properties will result in change in soil health and fertility, and hence the soil productivity. Hence, the main aim of this paper focuses on the analysis of land use/land cover (LULC) change pattern in spatial and temporal perspective and to present its impact on soil properties in the Merawu catchment over the period of 18?years. Post classification change detection was performed to quantify the decadal changes in historical LULC over the periods of 1991, 2001 and 2009. The pixel to pixel comparison method was used to detect the LULC of the area. The key LULC types were selected for investigation of soil properties. Soil samples were analysed in situ to measure the physicochemical soil properties. The results of this study show remarkable changes in LULC in the period of 18?years. The effect of land cover change on soil properties, soil compaction and soil strength was found to be significant at a level of <0.05. 相似文献
18.
19.
Stylized environments and ABMs: educational tools for examining the causes and consequences of land use/land cover change 总被引:1,自引:0,他引:1
A challenge in land change science is to assess the causes and consequences of LULC change and associated pattern–process relations. Increasingly, land change organizations are examining land use at local to global scales for historical, contemporary and future periods through scenarios that assess population–environment interactions. Spatial analytical tools in GIScience are being used to link people and environment and to search for the distal and proximate factors that affect local to global land use patterns. Spatial simulation models that rely upon complexity theory as the framework and agent-based models as the analytical approach offer the capability to inform through experimentation about land issues important to science and society. Using a stylized landscape where a selected set of key social, geographical and ecological elements are spatially organized, we describe how land dynamics can be examined through agent-based models as educational tools that are useful in the classroom, boardroom and public forums. 相似文献
20.
《International Journal of Digital Earth》2013,6(9):709-724
Six widely used coarse-resolution global land cover data-sets – Global Land Cover Characterization (GLCC), Global Land Cover 2000 (GLC2000), GlobCover land cover product (GlobCover), MODIS land cover product (MODIS LC), the University of Maryland land cover product (UMD LC), and the MODIS Vegetation Continuous Fields tree cover layer (MODIS VCF) disagree substantially in their estimates of forest cover. Employing a regression tree model trained on higher-resolution, Landsat-based data, these multisource multiresolution maps were integrated for an improved characterization of forest cover over North America. Evaluated using a withheld test sample, the integrated percent forest cover (IPFC) data-set has a root mean square error of 11.75% – substantially better than the 17.37% of GLCC, 17.61% of GLC2000, 17.96% of GlobCover, 15.23% of MODIS LC, 19.25% of MODIS VCF, and 15.15% of UMD LC, respectively. Although demonstrated for forest, this approach based on integration of multiple products has potential for improved characterization of other land cover types as well. 相似文献