首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Clonal selection feature selection algorithm (CSFS) based on clonal selection algorithm (CSA), a new computational intelligence approach, has been proposed to perform the task of dimensionality reduction in high-dimensional images, and has better performance than traditional feature selection algorithms with more computational costs. In this paper, a fast clonal selection feature selection algorithm (FCSFS) for hyperspectral imagery is proposed to improve the convergence rate by using Cauchy mutation instea...  相似文献   

2.
Currently, hyperspectral images have potential applications in many scientific areas due to the high spectral resolution. Extracting suitable and adequate bands/features from high dimensional data is a crucial task to classify such data. To overcome this issue, dimension reduction techniques have direct effects to improve the efficiency of classifiers on hyperspectral images. One common approach for decreasing the dimensionality is the feature/band selection by considering the optimum dimensionality of the hyperspectral imagery. In this paper, a new method was proposed to select optimal band for classification application, based on a metaheuristic Invasive Weed Optimization (IWO) algorithm. In this regard, the K-nearest neighbour (K-NN) technique was used as the classifier. Moreover, as a by-product of our band selection method, a new method was proposed to estimate an optimum dimension of the reduced hyperspectral images for better classification. Experimental results over three real-world hyperspectral datasets clearly showed that the proposed IWO-based band selection algorithm of this study led to the significant progress in selecting suitable bands for classification applications and estimation of optimum dimensionality of these datasets. In this regard, the overall accuracy (OA) of classification of the proposed IWO-based band selection algorithm was 92.02, 93.57, and 89.72 % for each dataset, respectively. Moreover, results reveal the superiority of the proposed IWO-based band selection algorithm against the other algorithms including GA, SA, ACO, and PSO for band selection purpose.  相似文献   

3.
With recent technological advances in remote sensing sensors and systems, very high-dimensional hyperspectral data are available for a better discrimination among different complex land-cover classes. However, the large number of spectral bands, but limited availability of training samples creates the problem of Hughes phenomenon or ‘curse of dimensionality’ in hyperspectral data sets. Moreover, these high numbers of bands are usually highly correlated. Because of these complexities of hyperspectral data, traditional classification strategies have often limited performance in classification of hyperspectral imagery. Referring to the limitation of single classifier in these situations, Multiple Classifier Systems (MCS) may have better performance than single classifier. This paper presents a new method for classification of hyperspectral data based on a band clustering strategy through a multiple Support Vector Machine system. The proposed method uses the band grouping process based on a modified mutual information strategy to split data into few band groups. After the band grouping step, the proposed algorithm aims at benefiting from the capabilities of SVM as classification method. So, the proposed approach applies SVM on each band group that is produced in a previous step. Finally, Naive Bayes (NB) as a classifier fusion method combines decisions of SVM classifiers. Experimental results on two common hyperspectral data sets show that the proposed method improves the classification accuracy in comparison with the standard SVM on entire bands of data and feature selection methods.  相似文献   

4.
精准农田识别是农作物估产和粮食安全评估的基础。遥感数据作为农田识别的重要数据源,可提供动态、快速的监测结果。高光谱数据在农田识别分类方面具有巨大的应用潜力,但其中的冗余波段影响了分类效率和分类精度。因此,本研究提出了一种适用于高光谱数据农田分类的混合式特征选择算法。首先,基于变量的重要性排序或约束程度,按步长逐步进行降维;其次,寻找分类精度骤减的转折点,并将其对应的变量作为特征子集;最后,利用序列后向选择SBS(Sequential Backward Selection)方法搜索最优分类特征子集。本研究利用GF-5高光谱数据,共研究了3种降维方法(随机森林RF(Random Forest)、互信息MI(Multi-Information)和L1正则化(L1 regularization))和3种分类算法(随机森林、支持向量机SVM(Support Vector Machine)和K近邻KNN(K-Nearest Neighbor))的组合在农田分类中的表现。结果表明,基于L1正则化法得到的特征子集自相关性较低,并且包含的红边和近红外波段有效提高了农田、森林和裸土的区分度。在不同分类模型比较中发现,SVM在高维空间中表现出非常好的抗噪能力,分类精度高于RF和KNN。而RF在低维空间中的泛化能力要高于SVM和KNN。相比于第一步降维得到的特征子集,使用SBS搜索得到的最优特征子集均提高了分类精度。最终,具有23维输入的L1-SVM-SBS分类模型得到了最高的总体分类精度(94.64%)和农田召回率(95.83%)。本研究为高光谱数据特征优选提供了一种新思路,筛选出了更具代表性的特征波段,提高了农田分类精度,对高光谱遥感分类研究具有参考价值。  相似文献   

5.
利用流形学习进行高光谱遥感影像的降维与特征提取   总被引:3,自引:1,他引:3  
基于最新的非线性降维方法——流形学习的理论,从高光谱遥感数据内在的非线性结构出发,采用全局化的等距映射(Isomap)方法进行降维,取得了优于常用的MNF方法的结果。把光谱角和光谱信息散度与测地距离相结合用于Isomap算法,结果在冗余方差和光谱规范化特征值方面优于采用传统欧氏距离计算邻域的Isomap方法。实验表明,流形学习是一种有效的高光谱遥感数据特征提取方法。  相似文献   

6.
提出一种稀疏自表达方法来研究高光谱影像分类中的波段选择问题。该方法利用字典矩阵等于测量矩阵的条件来改进多观测向量的稀疏表达模型,将波段子集看作高光谱影像波段集合中的代表子集。稀疏自表达方法将波段选择转换为寻求多观测向量中稀疏系数矩阵的非零行向量问题,通过引入混合范数来限定非零元素行向量的个数,利用快速交替方向乘子方法求解稀疏系数矩阵,并聚类非零行向量,实现波段的有效选择。基于两个公开高光谱影像数据集并对比其他4种波段选取方法来验稀疏自表达方法。实验结果证明,稀疏自表达方法能够在计算效率明显优于基于波段相关性的线性限制最小方差方法的同时,取得与该方法和非负稀疏矩阵分解方法相匹甚至略高的总体分类精度。  相似文献   

7.
波段选择是高光谱遥感图像分类的重要前提,本文提出了一种用于高光谱遥感图像波段选择的改进二进制布谷鸟算法,通过使用混合二进制编码算法更新子代鸟巢和使用遗传算法交叉方式更新被发现鸟巢两个方面对二进制布谷鸟算法进行改进,找出在图像中起主要作用且相关性低的波段,实现对高光谱遥感图像降维。将本文算法运用于PaviaU数据集和AVIRIS数据集,并与二进制布谷鸟算法、二进制粒子群算法、最小冗余最大相关算法、Relief算法等进行对比分析。结果表明,改进二进制布谷鸟算法波段特征选择效率更高,且选取的波段更具代表性,能够较好地提高后续分类精度。  相似文献   

8.
A margin-based feature selection approach is explored for hyperspectral data. This approach is based on measuring the confidence of a classifier when making predictions on a test data. Greedy feature flip and iterative search algorithms, which attempts to maximise the margin-based evaluation functions, were used in the present study. Evaluation functions use linear, zero–one and sigmoid utility functions where a utility function controls the contribution of each margin term to the overall score. The results obtained by margin-based feature selection technique were compared to a support vector machine-based recurring feature elimination approach. Two different hyperspectral data sets, one consisting of 65 bands (DAIS data) and other with 185 bands (AVIRIS data) were used. With digital airborne imaging spectrometer (DAIS) data, the classification accuracy by greedy feature flip algorithm and sigmoid utility function was 93.02% using a total of 24 selected features in comparison to an accuracy of 91.76% with full set of 65 features. The results suggest a significant increase in classification accuracy with 24 selected features. The classification accuracy (93.4%) achieved by the iterative search margin-based algorithm with 20 selected features using sigmoid utility function is also significantly more accurate than that achieved with 65 features. To judge the usefulness of margin-based feature selection approaches, another hyperspectral data set consisting of 185 features was used. A total of 65 selected features were used to evaluate the performance of margin-based feature selection approach. The results suggest a significantly improved performance by greedy feature flip-based feature selection technique with this data set also. This study also suggest that margin-based feature selection algorithms provide a comparable performance to support vector machine-based recurring feature elimination approach.  相似文献   

9.
利用高光谱遥感影像的空间纹理特征,可以提高高光谱遥感影像的分类精度。提出了一种多层级二值模式的高光谱影像空-谱联合分类方法。该方法将高光谱影像转化为局部二值模式特征图像获取像元微观特征,基于特征图像生成多层级特征向量获取像元宏观特征。为验证该方法的有效性,选取PaviaU、Salinas和Chikusei高光谱影像数据,利用核极限学习机分类器,分别针对光谱、局部二值模式、多层级二值模式等特征开展实验。结果表明,多层级二值模式空-谱分类总体精度分别达到97.31%、98.96%和97.85%,明显优于传统光谱、3Gabor空-谱等分类方法。该方法可为高光谱影像分类提供更加有效的类别判定特征,有助于提高影像分类精度并获取更加平滑的分类结果图。  相似文献   

10.
本文在分析了传统降维方法所面临问题的基础上,将禁忌搜索算法引入到高光谱影像的特征选择研究,指出由于禁忌搜索算法所具有的良好全局寻优能力,因而在该类影像的降维研究中有着广阔的应用前景。针对高维光谱数据的特点,讲述了算法运行过程中需注意的若干关键问题。实验表明,将禁忌搜索算法获取的波段进行高光谱影像分类,在求解的时间上和分类结果的精度都可达到令人满意的效果。  相似文献   

11.
A new approach for dimensionality reduction of hyperspectral data has been proposed in this article. The method is based on extraction of fractal-based features from the hyperspectral data. The features have been generated using spectral fractal dimension of the spectral response curves (SRCs) after smoothing, interpolating and segmenting the curves. The new features so generated have then been used to classify hyperspectral data. Comparing the post classification accuracies with some other conventional dimensionality reduction methods, it has been found that the proposed method, with less computational complexity than the conventional methods, is able to provide classification accuracy statistically equivalent to those from conventional methods.  相似文献   

12.
A band selection technique for spectral classification   总被引:2,自引:0,他引:2  
In hyperspectral remote sensing, sensors acquire reflectance values at many different wavelength bands, to cover a complete spectral interval. These measurements are strongly correlated, and no new information might be added when increasing the spectral resolution. Moreover, the higher number of spectral bands increases the complexity of a classification task. Therefore, feature reduction is a crucial step. An alternative would be to choose the required sensor bands settings a priori. In this letter, we introduce a statistical procedure to provide band settings for a specific classification task. The proposed procedure selects wavelength band settings which optimize the separation between the different spectral classes. The method is applicable as a band reduction technique, but it can as well serve the purpose of data interpretation or be an aid in sensor design. Results on a vegetation classification task show an improvement in classification performance over feature selection and other band selection techniques.  相似文献   

13.
传统谱聚类的高光谱影像波段选择模型中,采用的波段相似矩阵受到噪声或异常值的影响且仅能表征波段的单一相似特征,导致波段子集的选取结果受到限制.本文从波段选择的目的 出发,提出鲁棒多特征谱聚类方法,整合多个特征的波段相似矩阵来形成综合相似矩阵以解决上述问题.该方法假设4种相似性度量包括光谱信息散度、光谱角度距离、波段相关性...  相似文献   

14.
赵亮  王立国  刘丹凤 《遥感学报》2019,23(5):904-910
为降低高光谱遥感数据光谱空间的冗余度,提出一种快速的波段选择方法。该方法在波段子空间下进行,依次选择各子空间中方差最大的波段作为初始波段,设定目标函数,然后逐子空间替换波段使得目标性能更加优化,直至没有替换可以使得目标更优为止。在两个公开高光谱影像数据集上对比3种常用波段选择方法(ABC、AP、ABS)来验证提出方法的有效性,实验结果表明:(1)在印第安纳数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低22.04%、52.61%、55.71%,最佳指数分别提高0.58%、51.73%、0.95%,总体分类精度分别提高0.16%、1.39%、23.07%,在搜索效率上与同类型的ABC方法相比提高6.61%—69.02%;(2)在帕维亚大学数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低2.38%、0.51%、32.83%,最佳指数分别提高1.34%、17.97%、12.92%,总体分类精度分别提高0.31%、0.69%、8.53%,在搜索效率上与同类型的ABC方法相比提高19.13%—86.34%。本文提出的波段选择方法能够选择合适的波段子集满足不同的应用需要,是一种有效的波段选择方法。  相似文献   

15.
One of the challenging problems in processing high dimensional data, as hyperspectral images, with better spectral and temporal resolution is the computational complexity resulting from processing the huge amount of data volume. Various methods have been developed in the literature for dimensionality reduction, generally divided into two main techniques: data transformation techniques and features selection techniques. The feature selection technique is advantageous compared to transformation techniques in preserving the original data. However, deciding the appropriate number of features to be selected and choosing these features are very challenging since they require exhaustive researches. The progressive feature selection technique is a new concept recently introduced to address these issues based on priority criteria. However, this approach presents limits when these criteria are insufficient or depends on domain applications. In this paper, we present a new approach to improve the Progressive Feature Selection technique by adding new criteria that measure the amount of information present in each band. The endmembers extraction phase of the proposed approach includes both the N-FINDR and the ATGP algorithms. A case based reasoning system is used to choose the optimal criterion for the endmember extraction. The performances of this proposed approach were evaluated using AVIRIS hyperspectral image and the obtained results prove its effectiveness compared to other PBS techniques.  相似文献   

16.
In response to the curse of dimensionality in hyperspectral images (HSIs), to date, numerous dimensionality reduction methods have been proposed among which the feature extraction (FE) methods are of particular interest. This paper introduces a new supervised pixel-based FE called spectral segmentation and integration (SSI). In SSI, the spectral signature curve (SSC) of the pixels are identically divided into some non-overlapping segments, called channels. The existing bands in each channel are then integrated using a mean-weighted operator, leading to some new features in a very lower number than the original bands. SSI applies a particle swarm optimization (PSO) algorithm to globally search and locate the optimum positions and widths of the channels. For the sake of evaluation and comparison, the features provided by the proposed SSI method were applied to the well-known SVM classifier. The results were compared to not only a most recent pixel-based FE method, namely, spectral region splitting but also six conventional FE methods, including nonparametric weighted feature extraction, decision boundaries feature extraction, clustering-based feature extraction, semi-supervised local discriminant analysis, band correlation clustering and principal component analysis. Experimental results, obtained on two HSIs, proved the superiority of the proposed SSI.  相似文献   

17.
向娟  李钢 《现代测绘》2008,31(2):6-8
由于高光谱数据的海量高维特征,使得传统的信息系统难以有效地对这些数据进行高效地存储、处理、分析,表现等管理操作。因此如何采用新的技术来开发一个能有效管理高光谱遥感影像数据的影像管理系统,是当前高光谱快速发展和深入应用的一个瓶颈之一。本文在研究的过程中,对当前影像管理系统的发展作了大量的分析,利用成熟的关系数据库和程序设计语言,开发了一个方便实用的高光谱遥感影像管理系统以管理高光遥感影像和其他遥感信息,提高影像管理效率。系统已初步实现了多景高光谱遥感影像检索,可以任意加载、导入高光谱遥感影像,运行效果良好。  相似文献   

18.
在高光谱影像的分类过程中,如何有效地降低特征空间的维数,又能保证原始数据所包含的丰富地物信息是一项十分重要而繁琐的工作。深入分析了这种降维的必要性,并针对当前常用的降维方法存在的问题,提出了运用Tabu搜索算法获取对分类最为有利的特征波段的思想。考虑到高光谱数据的特点,指出了算法运行中应该注意的若干关键参数设置问题。实验表明,Tabu搜索算法在求解质量和执行效率方面都有着良好的表现,可以用于高光谱数据的降维处理。  相似文献   

19.
在高光谱影像的分类过程中,如何有效地降低特征空间的维数,又能保证原始数据所包含的丰富地物信息是一项十分重要而繁琐的工作.深入分析了这种降维的必要性,并针对当前常用的降维方法存在的问题,提出了运用Tabu搜索算法获取对分类最为有利的特征波段的思想.考虑到高光谱数据的特点,指出了算法运行中应该注意的若干关键参数设置问题.实验表明,Tabu搜索算法在求解质量和执行效率方面都有着良好的表现,可以用于高光谱数据的降维处理.  相似文献   

20.
Hyperspectral imagers are built line-by-line similar to images acquired by pushbroom sensors. They can experience striping artifacts due to variations in detector response to incident imagery. In this research, a method for hyperspectral image de-striping based on wavelet analysis and adaptive Fourier zero-frequency amplitude normalization has been developed. The algorithm was tested against three other de-striping algorithms. Hyperspectral image bands of different scenes with significant striping and random noise, as well as an image with simulated noise, were used in the testing. The results were assessed visually and quantitatively using frequency domain Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE) and/or Peak Signal-to-Ratio (PSNR). The results demonstrated the superiority of our proposed algorithm in de-striping hyperspectral images without introducing unwanted artifacts, yet preserving image details. In the noise-induced image results, the proposed method reduced RMSE error and improved PSNR by 3.5 dB which is better than other tested methods. A Combined method, integrating the proposed algorithm with a generic wavelet-based de-noising algorithm, showed significant random noise suppression in addition to stripe reduction with a PSNR value of 4.3 dB. These findings make the algorithm a candidate for practical implementation on remote sensing images including high resolution hyperspectral images contaminated with stripe and random noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号