首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
易连兴 《中国岩溶》2020,39(4):559-566
本文以贵州省纳雍县鬃岭崩塌滑坡带两个滑坡区为例,通过水文地质调查、水动力场分析、水化学和流量动态对比分析,得出结论(1)天然条件下,崩塌滑坡带存在3个相对独立的地下水系统,采煤活动改变了局部地下水径流排泄方向,使上部基岩裂隙水、中部岩溶水补给到下部基岩裂隙水中,最后从坑道或泉排泄出地表。(2)流量动态和钙离子含量变化表明,雨季中部岩溶水灌入式补给到了采空区坑道中,同时也表明老鬃岭镇滑坡区山体浅部垂直裂缝发育,左家寨滑坡区山体浅部至深部垂直裂缝均有发育。(3)鬃岭崩塌滑坡体内部地下水以非饱和水下渗运动为主,不存在饱和地下水流场,故而不存在水动力驱动滑坡影响作用。(4)在鬃岭崩塌滑坡孕灾或灾害触发过程中,地下水对垂直裂缝、滑动结构面的发展和岩体破坏、失稳主要起到加速和促进作用。本文对岩溶石山地区类似滑坡机理研究有一定意义。   相似文献   

2.
Detailed geomorphological mapping carried out in 5 sample areas in the North of Lisbon Region allowed us to collect a set of geological and geomorphological data and to correlate them with the spatial occurrence of landslide. A total of 597 slope movements were identified in a total area of 61.7 km2, which represents about 10 landslides per km2.The main landslide conditioning factors are: lithology and geological structure, slope angle and slope morphology, land use, presence of old landslides, and human activity.The highest landslide density occurs in Cretaceous marls and marly limestones, but the largest movements are in Jurassic clays, marls and limestones.The landslide density is higher on slopes with gradients above 20 °, but the largest unstable area is found on slopes of 10 ° to 15 °, thus reflecting the presence of the biggest slope movements. There is a correlation between landslides and topographical concavities, a fact that can be interpreted as reflecting the significance of the hydrological regime in slope instability.Concerning land use, the highest density of landslides is found on slopes covered with shrub and undergrowth vegetation.About 26% of the total number of landslides are reactivation events. The presence of old landslides is particularly important in the occurrence of translational slides and complex and composite slope movements.20% of the landslide events were conditioned by anthropomorphic activity. Human's intervention manifests itself in ill-consolidated fills, cuts in potentially unstable slopes and, in a few cases, in the changing of river channels.Most slope movements in the study area exhibit a clear climatic signal. The analysis of rainfall distribution in periods of recognised slope instability allows the distinction of three situations: 1) moderate intensity rainfall episodes, responsible for minor slope movements on the bank of rivers and shallow translational slides, particularly in artificial trenches; 2) high intensity rainfall episodes, originating flash floods and most landslides triggered by bank erosion; 3) long-lasting rainfall periods, responsible for the rise of the groundwater table and triggering of landslides with deeper slip surfaces.  相似文献   

3.
The article deals with a tool for landslides susceptibility assessment as a function of the hydrogeological setting at different scales. The study has been applied to a test area located in Southern Italy. First, a 3D groundwater flow model was implemented for a large-scale area. The simulation of several groundwater conditions compared with the landslide activity map allows drawing a hydrogeological susceptibility map. Then, a slope scale analysis was carried out for the Cavallerizzo landslide. For this purpose, a 2D groundwater parametrical modeling was coupled with a slope stability analysis; the simulation was carried out by changing the values of the main hydrogeological parameters (recharge, groundwater supply level, etc.). The results enabled to connect the slope instability to some hydrogeological characteristics that are easy to survey and to monitor (e.g., rainfall, piezometrical level, and spring discharge), pointing out the hazard thresholds with regards to different triggering phenomena.  相似文献   

4.
 Hydrological landslide-triggering thresholds separate combinations of daily and antecedent rainfall or of rainfall intensity and duration that triggered landslides from those that failed to trigger landslides. They are required for the development of landslide early warning systems. When a large data set on rainfall and landslide occurrence is available, hydrological triggering thresholds are determined in a statistical way. When the data on landslide occurrence is limited, deterministic models have to be used. For shallow landslides directly triggered by percolating rainfall, triggering thresholds can be established by means of one-dimensional hydrological models linked to the infinite slope model. In the case of relatively deep landslides located in topographic hollows and triggered by a slow accumulation of water at the soil-bedrock contact, simple correlations between landslide occurrence and rainfall can no longer be established. Therefore real-time failure probabilities have to be determined using hydrological catchment models in combination with the infinite slope model. Received: 15 October 1997 · Accepted: 25 June 1997  相似文献   

5.
This paper presents an application of rock engineering system (RES) in an attempt to reveal and assess the inherent instability potential of 388 sites where equivalent landslides have been manifested and recorded in the region of Karditsa County, Greece. The main objective has been defining the principal causative and triggering factors responsible for the manifestation of landslide phenomena, quantify their interactions, obtain their weighted coefficients, and calculate the instability index, which refers to the inherent potential instability of each natural slope of the examined region. From the statistical interpretation of the data reported in a well-documented database and concerning the examined failure sites, a clear correlation between the instability index and the area affected by a single landslide event has been revealed. Almost the entire failure sites, 98% of the examined slope sites, exhibit an instability index value over 55, a value which is thought to be a critical threshold for landslide manifestation concerning natural slopes in Karditsa County. It is argued that the presented RES methodology, engaging the selected set of parameters, could be considered as an effective expert's tool for ranking, in an objectively optimal and simple way, the instability potential of natural slopes in Karditsa County, and thus providing a tool for sound zoning landslide hazard.  相似文献   

6.
秦岭中部太白县地质灾害发育特征及危险性评估   总被引:2,自引:0,他引:2  
王涛  吴树仁  石菊松  李滨  辛鹏 《地质通报》2013,32(12):1976-1983
以陕西省太白县为例,分析了秦岭中部山区地质灾害形成的地质环境条件,重点指出在植被茂密山区,异常强降雨及农耕、建房、修路和矿山开采4种人类工程活动对地质灾害的关键诱发作用。对崩塌、滑坡、泥石流和不稳定斜坡4类典型地质灾害进行了亚类细分和发育特征分析,并总结指出了地质灾害区域宏观分布特征。筛选了9种关键的地质灾害影响和诱发因素,基于将集中调查区指示的地质灾害发育规律,外推应用于全区地质灾害评估的思路,利用信息量模型对太白县全区进行了地质灾害危险性定量评估,结果显示高危险区主要集中分布在县域北部人口聚居的盆地区,以及南部河流与公路沿线地段。定量检验显示,危险性评估结果与地质灾害的实际分布十分吻合,表明基于信息量模型的地质灾害危险性评估方法能够很好地适用于秦岭腹地山区。  相似文献   

7.
This paper is focussed on the hazard impact of landslides in the Three Gorges, and represents the progression of our ongoing study on regional land instability assessment in the Three Gorges area using imagery data from the Advanced Spaceborne Thermal Emission Radiometer (ASTER). The key development here is the establishment of a model that integrates land instability with several factors that can relate hazard to human life, such as slope failures occurring in proximity to built-up areas and roads, and areas of high landslide risk along the bank of Yangtze and its major tributaries. The method correctly identifies some of the known destructive landslides in the region, like Qianjiangping and Huangtupo, as belonging to areas of potentially high landslide impact. Our results suggest that several population centres, including the towns of Wushan and Badong, are rated at high landslide hazard levels. This study highlights the importance of differentiating between landslide types within susceptibility assessment, and identifies those locations in the Three Gorges where the probability of landslide occurrence with negative impact to life and property is greatest.  相似文献   

8.
9.
Landslides are a main cause of human and economic losses worldwide. For this reason, landslide hazard assessment and the capacity to predict this phenomenon have been topics of great interest within the scientific community for the implementation of early warning systems. Although several models have been proposed to forecast shallow landslides triggered by rainfall, few models have incorporated geotechnical factors into a complete hydrological model of a basin that can simulate the storage and movement of rainwater through the soil profile. These basin and full hydrological models have adopted a physically based approach. This paper develops a conceptual and physically based model called open and distributed hydrological simulation and landslides—SHIA_Landslide (Simulación HIdrológica Abierta, or SHIA, in Spanish)—that is supported by geotechnical and hydrological features occurring on a basin-wide scale in tropical and mountainous terrains. SHIA_Landslide is an original and significant contribution that offers a new perspective with which to analyse shallow landslide processes by incorporating a comprehensive distributed hydrological tank model that includes water storage in the soil coupled with a classical analysis of infinite slope stability under saturated conditions. SHIA_Landslide can be distinguished by the following: (i) its capacity to capture surface topography and effects concerning the subsurface flow; (ii) its use of digital terrain model (DTM) to establish the relationships among cells, geomorphological parameters, slope angle, direction, etc.; (iii) its continuous simulation of rainfall data over long periods and event simulations of specific storms; (iv) its consideration of the effects of horizontal and vertical flow; and (vi) its inclusion of a hydrologically complete water process that allows for hydrological calibration. SHIA_Landslide can be combined with real-time rainfall data and implemented in early warning systems.  相似文献   

10.
Landslides are a significant hazard in many parts of the world and represent an important geohazard in China. Rainfall is the primary triggering agent for landslides and often used for prediction slope failures. However, the relationship between rainfall and landslide occurrences is very complex. Great efforts have been made on the study of regional rainfall-induced landslide forecasting models in recent years; still, there is no commonly accepted method for rainfall-induced landslide prediction. In this paper, the quantitative antecedent soil water status (ASWS) model is applied to investigate the influence of daily and antecedent rainfall on the triggering of landslides and debris flows. The study area is Wudu County in Gansu Province, an area which exhibits frequent landslide occurrences. The results demonstrate a significant influence of high intensity rainfall events on landslide triggering. Still, antecedent rainfall conditions are very important and once a threshold of approximately 20 mm is exceeded, landslides and debris flows can occur even without additional rainfall. The study presented could also facilitate the implementation of a regional forecasting scheme once additional validation has been carried out.  相似文献   

11.
水动力型滑坡是指在冰川融雪、降雨、水位变动、地表径流及地下水活动等水动力因素驱动下而发生的斜坡岩土体失稳灾害。西南地区是水动力型滑坡尤其是库区滑坡的高发区,其失稳破坏直接威胁到人类的生命财产和基础设施的安全,且有可能造成深远的次生灾害,提升水动力型滑坡灾害的监测预警、综合防控与应急处置水平极为迫切。水动力型滑坡易发于松散堆积层、破碎岩体、软岩以及含有软弱夹层的斜坡等地层,地质环境、水文活动以及人类活动干扰等因素的长期作用在水动力型滑坡的孕育过程中起着关键作用。斜坡在各种不利因素的持续交替作用下,逐渐产生变形破坏,稳定性不断降低并趋于极限失稳状态,最终在短期水文条件的改变下而导致整体失稳破坏。斜坡失稳后的滑坡动力过程非常复杂,尤其是特大型高位滑坡,在运动过程中可能会产生强烈的冲击破碎和沿程侵蚀铲刮现象,导致滑坡运动性态的改变和堆积方量的增大,水的存在会加剧滑坡沿程侵蚀铲刮作用以及导致运动性态向流态化转变而造成更远的运动距离和更广的致灾范围。水动力型滑坡是一个复杂的系统性问题,不同地质结构和水动力条件的滑坡变形破坏过程存在很大差异,远距离非接触式滑坡早期识别与监测技术以及基于人工智能和大数据且具备自主学习的滑坡预报预警方法是未来重要发展方向。水动力型滑坡防治涉及到工程建设、经济民生、社会等多方面因素,需要综合运用工程措施和非工程措施。在未来水利水电工程建设过程中,应重视库区滑坡的危害性,复建设施的修建应尽可能远离库区滑坡影响区。  相似文献   

12.
Bivariate and multivariate statistical analyses were used to predict the spatial distribution of landslides in the Cuyahoga River watershed, northeastern Ohio, U.S.A. The relationship between landslides and various instability factors contributing to their occurrence was evaluated using a Geographic Information System (GIS) based investigation. A landslide inventory map was prepared using landslide locations identified from aerial photographs, field checks, and existing literature. Instability factors such as slope angle, soil type, soil erodibility, soil liquidity index, landcover pattern, precipitation, and proximity to stream, responsible for the occurrence of landslides, were imported as raster data layers in ArcGIS, and ranked using a numerical scale corresponding to the physical conditions of the region. In order to investigate the role of each instability factor in controlling the spatial distribution of landslides, both bivariate and multivariate models were used to analyze the digital dataset. The logistic regression approach was used in the multivariate model analysis. Both models helped produce landslide susceptibility maps and the suitability of each model was evaluated by the area under the curve method, and by comparing the maps with the known landslide locations. The multivariate logistic regression model was found to be the better model in predicting landslide susceptibility of this area. The logistic regression model produced a landslide susceptibility map at a scale of 1:24,000 that classified susceptibility into four categories: low, moderate, high, and very high. The results also indicated that slope angle, proximity to stream, soil erodibility, and soil type were statistically significant in controlling the slope movement.  相似文献   

13.
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfall-induced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity-Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.  相似文献   

14.
Physical and numerical modelling of shallow landslides   总被引:2,自引:1,他引:1  
Physical modelling is an extremely useful tool for the study of the triggering process of shallow landslides. For this reason, in this work, numerous laboratory tests have been performed using a specific flume test apparatus. A wide range of initial soil conditions (i.e. porosity and water content) has been investigated to analyze the induced effect on failure time and mode, even simulating the presence of preferential flow directions within the soil. Different tests have been performed also reproducing, on a laboratory scale, the landslide event occurred on October 1, 2009, in the area where the testing material was sampled (i.e. Giampilieri, north-eastern Sicily, Italy). Furthermore, the experimental results have been employed to verify the capability of shallow landslide instability prediction (SLIP), a simplified stability model for the prediction of shallow landslide occurrence, to reproduce the triggering process.  相似文献   

15.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

16.
This paper deals with groundwater hydrology at a prominent fracture zone landslide slope (Nuta–Yone landslides) in Japan with an objective to explore an efficient method for the application of landslide stability enhancement measures. The correlation analyses between the hydrological parameters and ground surface movement data at this landslide resulted in low correlation values indicating that the geological formation of the area is extremely complex. For the purpose of understanding the groundwater flow behavior in the landslide area, a three-dimensional transient groundwater flow model was prepared for a part of the landslide slope, where the levels of effectiveness of applied landslide stability enhancement measures (in the form of multilayered deep horizontal drains) are different, and was calibrated against the measured water surface elevations at different piezometer locations. The parameter distributions in the calibrated model and the general directions of the groundwater flow in terms of flow vectors and the results of particle tracking at the model site were interpreted to understand the reasons for variations in effectiveness of existing landslide stability enhancement measures and to find potentially better locations for the implementation of future landslide stability enhancement measures. From the modeling results, it was also understood that groundwater flow model can be effectively used in better planning and locating the landslide stability enhancement measures.  相似文献   

17.
Modeling landslide recurrence in Seattle, Washington, USA   总被引:5,自引:0,他引:5  
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.  相似文献   

18.
B. Sirangelo  G. Braca   《Engineering Geology》2004,73(3-4):267-276
Mathematical models for forecasting landslides and mudflow movements triggered by heavy rainfalls are useful tools to develop warning systems and hazard mitigation strategy for loss reduction.

In the present paper, an application of Forecasting of Landslides Induced by Rainfalls (FLaIR) hydrological model, correlating the rainfall amount and landslide or mudflow movement occurrences, will be performed. Model application presented here refers to the mudflows of Sarno, Southern Italy, and is based on hourly precipitation data available from a real-time rain gauge installed immediately after the catastrophic event that occurred on May 1998.

The application is extended from October 1998 to May 2002. The main objective is to perform a backanalysis in order to verify the reliability of the proposed scheme for use in a warning system.

Among the most interesting results of the application, the relatively few false alarms for populations given by the model may be highlighted.

The FLaIR model is more useful when it is integrated with a probabilistic model for forecasting precipitation depths during a storm event at an hourly scale. By stochastic modelling of hourly precipitation, it is possible to estimate the probability of reaching the alarm threshold before allowing civil protection actions.  相似文献   


19.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

20.
Massive slow-moving landslides often exhibit deformation patterns which vary spatially across the landslide mass and temporally with changing boundary conditions. Understanding the parameters controlling this behaviour, such as heterogeneous material properties, complex landslide geometry and the distribution of groundwater, is fundamental when making informed design and hazard management decisions. This paper demonstrates that significant improvements to the geomechanical analysis of massive landslides can be achieved through rigorous, three-dimensional numerical modelling. Simulations of the Downie Slide incorporate complex shear zone geometries, multiple water tables and spatial variation of shear zone stiffness parameters to adequately reproduce real slope behaviour observed through an ongoing site monitoring program. These three-dimensional models are not hindered by shortfalls typically associated with two-dimensional analysis, for example the ability to accommodate lateral migration of material, and they out-perform more simplified three-dimensional models where bowl-shaped shear geometries are incapable of reasonably reproducing observed deformation patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号