首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏铁路冻土地区乌丽山垭口段工程地质选线   总被引:2,自引:0,他引:2  
曹峰 《冰川冻土》2003,25(Z1):4-7
青藏铁路沿线的多年冻土区分布范围广泛, 冻土不良地质现象发育, 线路通过时难以绕避. 在翔实勘察和认真分析的基础上, 根据多年冻土区铁路选线的原则, 对多年冻土分布的乌丽山垭口区域线路方案进行比选.  相似文献   

2.
青藏500kV直流联网工程穿越青藏高原多年冻土区,冻土特有的工程问题将对工程设计、施工和安全运营产生重要影响。由于输电线路属于点线结构的工程特点,即塔基的稳定性关系到整条线路的稳定性,而塔基点位又具有一定的可调性,因此,多年冻土及厚层地下冰的分布特征对于输电线路的选线、选位较其他线性工程更具重要意义。本文主要在输电线路沿线冻土分布的基础上,重点对微地貌条件下冻土和厚层地下冰的分布发育规律进行了分析和研究。并在此基础上,结合输电线路工程特点,就线路的选线选位的原则进行了分析和确定。  相似文献   

3.
祁连山区多年冻土空间分布模拟   总被引:1,自引:1,他引:0  
祁连山区位于青藏高原东北边缘,是亚洲水塔重要的组成部分,多年冻土的变化对生态系统和水资源平衡有着重要影响。基于青藏高原第二次综合科学考察、道路勘察钻孔点以及前人所获得的多年冻土下界资料,回归得出祁连山区多年冻土下界统计模型,借助ArcGIS平台在DEM数据的支持下,模拟出祁连山区多年冻土空间分布图。结果表明:祁连山区多年冻土分布的下界具有良好的地带性规律,表现为随经纬度增加而降低的规律;祁连山区多年冻土在空间分布上呈现出以哈拉湖为中心向四周扩散的分布格局;祁连山区总面积约为16.90×104 km2,其中多年冻土面积约为8.03×104 km2,占总面积约47.51%。多年冻土区与季节冻土区之间存在着有不连续多年冻土分布的过渡区,过渡区面积约1.43×104 km2,占总面积约8.46%。  相似文献   

4.
青藏铁路多年冻土工程的研究与实践   总被引:29,自引:11,他引:18  
孙永福 《冰川冻土》2005,27(2):153-162
青藏铁路建设需穿越高原多年冻土区, 在探明沿线多年冻土分布特征的基础上, 合理确定了青藏铁路线路的走向方案.在多年的冻土研究和工程实践的指导下, 有针对性地开展了 5 个不同类型冻土工程试验研究, 取得重要科研成果, 指导设计和施工.全面总结4 a来青藏铁路多年冻土工程的研究与实践, 提出了“主动降温, 冷却地基, 保护冻土”的设计思想, 制定了路基、桥涵、隧道成套工程技术措施和先进施工工艺, 对确保多年冻土工程质量发挥了重要作用.  相似文献   

5.
基于综合调查的西昆仑山典型区多年冻土分布研究   总被引:1,自引:1,他引:0  
西昆仑山位于青藏高原西北部,地势起伏大,气候干旱严寒.为了解其多年冻土分布状况,以219国道大红柳滩到奇台达坂之间的沿线区域作为西昆仑山典型区,以野外冻土钻探、坑探、物探为主要调查手段,综合分析该区域多年冻土分布的下界.对现场调查数据的初步分析表明,该区域多年冻土阳坡下界在海拔4 800m,阴坡下界在海拔4 650m,东西坡下界在海拔4 700m.依据上述冻土下界的分布规律,以数字高程模型为基础,通过ArcGIS软件建立了西昆仑山典型区的多年冻土分布模型,实现了对研究区域多年冻土分布的模拟.对该区域的研究结果表明:典型区内多年冻土的分布面积为3 136.3km2,占区域总面积的89.4%.结果与青藏高原冻土图在该区域的截图相比,多年冻土的面积略有增加.对比分析模拟图和截图后发现,基于实际调查的多年冻土模拟分布图更准确的描述了河谷的融区,而截图的多年冻土分布界限较为粗糙,缩小了喀喇喀什河支沟融区,人为放大了219国道大红柳滩到奇台达坂之间的宽谷融区.  相似文献   

6.
多年冻土的分布会受到局地地质、地形地貌和地表覆被等因素的影响.为探究各因子对多年冻土分布的影响强弱,选择青藏高原五个典型多年冻土区为研究区,基于MODIS和SRTM DEM数据提取研究区内2003—2012年平均地表温度、NDVI、地表反照率、积雪日数和坡度、坡向等因子,并采用地理探测器模型研究了各因子对研究区多年冻土...  相似文献   

7.
引言 大小兴安岭地处我国东北部,该区广泛分布连续多年冻土及岛状多年冻土。由于多年冻土的存在,使大小兴安岭地下水具有特殊的水文地质条件,并且与自然界中各种因素互相依存,互为因果关系,错综复杂地变化着,从而形成了连续多年冻土区地下水,岛状多年冻土区地下水。  相似文献   

8.
骆友曾 《冰川冻土》2003,25(8):174-176
从施工组织、径路选择、敷设、防护等几方面,对高原多年冻土区通信直埋光缆线路工程的施工方法、施工注意事项、施工要求做了简明扼要介绍,对青藏铁路通信光缆线路工程的施工具有指导意义,对保证通信工程的质量、保证行车安全具有重要意义。  相似文献   

9.
试论东北地区多年冻土形成的气候条件及其演化   总被引:2,自引:2,他引:2  
东北地区多年冻土主要分布在大小兴安岭一带,属欧亚大陆多年冻土区的一部分,可称高纬度多年冻土。但在现代多年冻土南界(48°N)以南的长白山与大兴安岭南端的黄岗梁地区,因海拔超过2000米,有山地多年冻土分布。至于古多年冻土的遗迹,如古冰楔、冰卷泥、不对称谷、冻融蠕流沉积等则一直分布在北纬42°的松辽分水岭一带,甚至更南。  相似文献   

10.
沱沱河流域是长江的发源地之一,其广泛分布的多年冻土对长江源区的产汇流过程、生态系统乃至于区域气候都有着重要影响,对该区域多年冻土分布和特征的调查和了解,可为研究江河源区多年冻土与气候、水文、生态的相互作用关系提供基础数据支撑。2020年10—11月,研究团队对沱沱河源区的多年冻土开展了为期50天的野外调查工作,并在不同下垫面类型、不同地貌部位和不同海拔高度共布设钻孔32个,总钻进深度1 200 m。该文是基于钻孔和探坑资料对沱沱河源区多年冻土特征和地下冰发育状况的初步总结。结果显示,沱沱河源区多年冻土在一定程度上受河流和地热影响形成了局部融区,其多年冻土下界大致在4 650~4 680 m之间;钻孔揭示的多年冻土上限平均埋藏深度为(2.47±0.98) m,部分地区存在融化夹层;受浅表层沉积物岩性和地热的影响,多年冻土下限埋藏深度相对较浅,平均为19.3 m,多年冻土相对较薄,平均厚度为15.0 m;多年冻土下限深度和多年冻土的厚度最大为75.0 m和72.7 m;地形地貌、沉积物特征和地热条件是影响多年冻土厚度存在较大空间差异的主要原因。研究区内地下冰主要分布于15.0 m深度以上范围内,同时也发现了处于萎缩状态的冰核丘与石质冻胀丘,这些现象也一定程度上与该研究区多年冻土退化过程有关。  相似文献   

11.
黄河源区冻土特征及退化趋势   总被引:9,自引:8,他引:9  
黄河源区位于青藏高原多年冻土区东北部边缘地带,是季节冻土、岛状多年冻土和在大片连续多年冻土并存地带.多年冻土层在垂向分布上有衔接状和不衔接状两大类.不衔接状又可分为浅埋藏(8m)、深埋藏(8m)和双层多年冻土等形式.从20世纪80年代以来,源区气温以0.02℃.a-1增温率持续上升,人类经济活动日益增强,导致冻土呈区域性退化.多年冻土下界普遍升高50~80m,最大季节冻深平均减少了0.12m,浅层地下水温度上升0.5~0.7℃.冻土退化总体趋势是由大片状分布逐渐变为岛状、斑状分布,多年冻土层变薄,冻土面积缩小,融区范围扩大.部分多年冻土岛完全消失变为季节冻土.  相似文献   

12.
中国的多年冻土──过去与现在   总被引:14,自引:0,他引:14       下载免费PDF全文
邱国庆  程国栋 《第四纪研究》1995,15(1):13-22,97
中国多年冻土区的总面积约占中国陆地面积的22.4%,达2150000km2。多年冻土的分布特征受气候条件在三度空间的变化所制约。自晚更新世以来,其分布情况已有相当的变化。在东次冰期最盛期,东北地区多年冻土南界曾推进到北纬41—42°,在全新世暖期,南界向北退缩,但晚更新世形成的冰楔和多年冻土至今仍存在于大兴安岭北部,全新世中期严寒期冻土有所扩展并形成冰楔。随着气候变化,中国西部高山和高原区高海拔冻土的分布下界已上移800—1000m,但高山和高原的主要部分仍处于冰缘环境,有的地方在全新世还发育了共生型多年冻土。  相似文献   

13.
小兴安岭黑大公路沿线多年冻土分布及退化状态   总被引:3,自引:8,他引:3  
王彪  盛煜  刘建平 《冰川冻土》2001,23(3):302-306
黑大公路沿线多年土主要分布于黑河-北安段,属小兴安岭岛状多年冻土区,该区存在的多年冻土是晚全新世寒冷时期的产物,现处于欧亚多年冰土南界边缘,多年冻土发育在低洼、地表积水、塔头草生长茂密、草炭和泥炭发育的沼泽化湿地当中,沼泽湿地独特的热交换特性决定了其中发育的多年冻土处于退化的最晚阶段,冻土的退化在自然条件下可能依赖于由于至上的地下热流。多年冻土的地温剖面表现为零梯度曲且冰土温度接近于0℃,由此决定了多年冻土对人为活动干扰的敏感性。  相似文献   

14.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是一种难降解、毒性强的致癌性污染物,其广泛分布于各环境介质中,陆地环境中90%的PAHs累积在土壤中。随着资源的开发,由油品泄漏、垃圾渗滤、污水排放等行为造成的多年冻土区PAHs土壤污染问题日益突显,并且在气候变化背景下,多年冻土中的PAHs具有重新释放而造成二次污染的风险,多年冻土区土壤多环芳烃污染分布特征和迁移规律研究对评估多年冻土区生态环境风险,防治土壤持久性有机物污染,保障广大多年冻土居民生命健康安全具有重要意义。通过回顾目前国内外多年冻土区土壤中PAHs污染的相关研究,分析发现多年冻土区未受污染的土壤中PAHs的污染水平远低于中低纬度人口密集区域,可代表地球土壤中PAHs的背景值;高纬度或高海拔的地理位置以及严寒的气候使得冻土区土壤中PAHs一个普遍且最重要的来源是大气远距离传输;活动层的冻融作用主要通过改变土壤理化性质和控制水分运移方向影响PAHs在多年冻土区土壤中的垂向分布特征,多年冻土的低渗透性具有阻碍PAHs垂向迁移的作用。综合分析已有研究成果,表明目前冻土区土壤PAHs污染研究还是大量集中于表层土壤中的污染分布调查和来源解析,而关于PAHs在活动层和多年冻土层中的垂向迁移研究还仅限于对其在土壤剖面中分布状况的解释性分析,冻融作用对PAHs在土壤中的迁移、转化和归宿的影响机制还不清楚。未来多年冻土区土壤中PAHs的研究将集中于迁移转化机理与污染治理技术两方面,针对PAHs在多年冻土区土壤中迁移行为的模拟模型亟待研究开发,以实现PAHs污染储量和迁移通量的定量预测;此外,多年冻土区土壤污染问题的深入研究还需要紧密联系多圈层、多界面、多介质、多要素以及多目标污染物而开展。  相似文献   

15.
全球气候变化下青藏公路沿线冻土变化响应模型的研究   总被引:16,自引:17,他引:16  
利用英国Hadley气候预测与研究中心GCM模型HADCM2预测的气温变化背景,分别提取青藏公路沿线地区在2009年,2049年和2099年的气温参数,考虑年平均气温和年平均地温的关系及年平均地温与海拔,纬度的关系模型,多年冻土下界分布模型和地温带分带,建立青藏公路沿线多年冻土下界分布的响应模型和多年冻土地温带的响应模型,研究结果表明,2009年青藏公路沿线的冻土变化较小,多年冻土极稳定带,稳定带和基本稳定带仅发生微弱的变化,基本稳定过渡带和不稳定带变化较大,多年冻土,逐渐退化,2049年青藏公路沿线多年冻土各地温带变化较大,但仍以基本稳定过渡带和不稳定带变化最大,多年冻土发生较大范围的退化;2099年后青藏公路沿线冻土发生了很大的变化,多年冻土发生大面积的退化,融区面积逐渐增大,多年冻土地温带也发生了较大的变化,其中多年冻土上带仅保留了稳定带,极稳定带全部消失,稳定带和基本稳定带全部转化为不稳定带。  相似文献   

16.
多年冻土区土壤碳、氮的可变性及对深层土壤特性了解的缺乏限制了人们对气候变化响应的理解。为明确东北大兴安岭多年冻土区森林土壤有机碳、有效氮(铵态氮、硝态氮)含量分布特征,于2020年秋季(9月末)采集呼玛河流域三种类型多年冻土区(不连续多年冻土区、零星多年冻土区和岛状多年冻土区)16个1 m深的土壤剖面,基于结构方程模型探讨海拔、气候、冻土区类型和植被类型等环境变量对森林土壤有机碳和有效氮含量的影响。结果表明:土壤有机碳和硝态氮含量在不连续多年冻土区高于零星多年冻土区和岛状多年冻土区,土壤铵态氮含量在零星多年冻土区高于岛状多年冻土区和不连续多年冻土区;在垂直剖面上,随着土壤深度的增加,土壤有机碳和有效氮含量呈降低趋势,且土壤有机碳与有效氮之间呈显著的负相关关系(P<0.05)。结构方程模型表明,植被类型和年平均温度是土壤有机碳含量变化的主要控制因素,年均降水量对土壤有机碳含量变化的影响最弱;冻土区类型和植被类型是土壤铵态氮和硝态氮含量变化的主要控制因素。研究结果能够为未来准确模拟和估算呼玛河流域多年冻土区森林土壤碳氮储量提供一定的数据支撑。  相似文献   

17.
青藏高原多年冻土区是世界上中低纬度多年冻土面积最大的区域,气候变化引起青藏高原多年冻土区年平均地温上升、地下冰融化、多年冻土退化等问题。借助ARCGIS技术手段,通过地下冰计算模型和Stefan公式计算研究区不同气候变化情景模式下的地下冰体积含冰量和活动层厚度变化。结果表明:在未来几十年内多年冻土的分布范围将不会发生显著变化,多年冻土的主要退化形式为地下冰的消融、低温冻土向高温冻土转化;但本世纪末多年冻土将发生大范围的退化。这一过程将引起热融滑塌、热融沉陷等冻土热融灾害。将Nelson热融灾害风险性评价模式进行修正,对研究区灾害风险性进行评估区划。最大的危险区主要分布在西昆仑山南麓、青南山原中部、冈底斯山和念青唐古拉山南麓、喜马拉雅山南麓部分区域,在未来几十年内有加剧的趋势。  相似文献   

18.
青藏铁路多年冻土工程地质特征及其评价   总被引:1,自引:0,他引:1  
青藏高原多年冻土是地质历史时期高海拔寒冷气候条件下的产物,也是青藏铁路建设的三大难题之一;而多年冻土工程地质特征及其评价工作是作出合理、可靠的工程设计的基础。结合青藏铁路沿线多年冻土区的15个地形地貌分区,在青藏铁路多年冻土区选择了70个典型断面进行了地质勘查,采用地质钻探和室内试验相结合的方法,研究了各区的工程地质特征并对其工程地质类型进行了评价。研究表明:青藏铁路多年冻土区冻土类型多样,高含冰量冻土、厚层地下冰广泛分布,不同区段地温差异性较大,工程地质条件复杂多变,良好、一般、不良和极差的工程地质区段交错分布。  相似文献   

19.
煤矿开采过程中的冻土环境问题与对策   总被引:1,自引:1,他引:0  
冻土区矿产资源的开发,对多年冻土的影响速度快、范围广、最直接,是其他人为活动无法比拟的.特别是煤矿开采,它对多年冻土影响剧烈,使得煤矿区冻土环境更加脆弱.青海木里煤田矿区处于青藏高原阿尔金山—祁连山高寒带山地多年冻土区,是大通河上游水源涵养生态功能区,冻土生态环境较为敏感.在分析青海木里煤田矿区多年冻土分布状况与特征的基础上,从多年冻土变化和多年冻土区自然环境变化两个方面,探讨了煤矿开采过程中的冻土环境问题,并提出避免和减缓煤矿开采对冻土环境造成影响的建议与对策,以期为寒区资源合理开发利用保护提供科学依据.  相似文献   

20.
青藏铁路冻土与融区过渡段路基变形特性试验研究   总被引:1,自引:1,他引:0  
冻胀和融沉是影响寒区路基稳定性的两大问题.对于多年冻土到融区过渡段路基,除考虑冻胀和融沉外,还应考虑多年冻土区和融区路基沉降变形差和冻胀变形差问题.根据青藏铁路沱沱河试验段路基在竣工后3a内的现场试验数据,分析了有代表性路基的地温变化、路基基底变形以及整个试验段的冻胀、沉降变形差问题,计算出了多年冻土与融区过渡段路基的合理长度.结果表明:多年冻土与融区过渡地带沉降总变形量相差较大,但从年沉降速率来看,路基不会产生突降,且随着沉降速率逐渐减小,路基趋于稳定;试验段内冻胀量差异不大,不会影响线路平顺度.对于本试验段此类工程地质条件,可以采用允许多年冻土融化原则的工程措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号