首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高光谱遥感影像光谱维度高、数据量大且波段间冗余信息量大,利用集成学习算法可有效地提升高光谱遥感影像的识别精度。本文首先概述了高光谱遥感影像的分类任务和目前存在的问题,其次介绍了集成学习分类算法的原理,系统性阐述了高光谱遥感影像分类中动态集成和静态集成算法的研究现状,并提出了有待进一步研究的问题。  相似文献   

2.
随机森林算法是近年来发展起来的一种新型算法,具有速度快、精度高等优势,综合性能优异。本文运用随机森林算法和Hymap高光谱数对几种常见的作物进行了分类识别,并与支持向量机的分类结果进行了对比,综合讨论了随机森林算法的优势与不足。实验结果表明:当实际参与训练的样本数目接近时随机森林算法的分类精度和运算速度都优于支持向量。在提取足够样本的情况下,随机森林能在保证精度的条件下节约大量时间,在大面积的遥感分类中具有较大应用潜力。  相似文献   

3.
高光谱遥感影像分类研究进展   总被引:4,自引:0,他引:4  
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得快速进展。本文系统总结和评述了当前高光谱遥感影像分类的相关研究进展,在总结分类策略的基础上,重点从以核方法为代表的新型分类器设计、特征挖掘、空间-光谱分类、基于主动学习和半监督学习的分类、基于稀疏表达的分类、多分类器集成六个方面对高光谱影像像素级分类最新研究进行了综述。针对今后的研究方向,指出高光谱遥感影像分类一方面要适应大数据、智能化高光谱对地观测的发展前沿,继续引入机器学习领域的新理论、新方法,综合利用多源遥感数据、多维特征空间互补的优势,提高分类精度、分类器泛化能力和自动化程度;另一方面要关注高光谱遥感应用的需求,突出高光谱遥感记录精细光谱特征的优势,针对应用需求发展有效的分类方法。  相似文献   

4.
高光谱遥感影像优化分类波段选择   总被引:3,自引:0,他引:3  
利用粗糙集关于属性依赖性公式,本文给出一种定义遥感影像波段间相似度的方法,通过模糊聚类,得到对高光谱遥感影像原始波段集合的模糊等价划分,在每个模糊等价波段组中,选择一个代表性波段完成对原始波段集合的初步降维,基于遗传算法并结合粗糙集理论,在降维中的波段集合中进一步进行的分类波段组合的优化选择,实验结果表明,本文给出的高光谱遥感影像优化分类波段组合选择方法是非常有效的。  相似文献   

5.
随着航空航天技术与遥感技术的不断发展,遥感影像在诸多领域的应用不断拓展,其中高光谱分辨率遥感影像具有“图谱合一”的特点,即该数据既包含了具有强大区分性的地物光谱信息,又包含了丰富的地物空间位置信息,因此高光谱数据具有非常大的应用潜力。高光谱异常目标检测问题,是在对目标先验信息未知的前提下,根据光谱与空间信息实现对区域中的异常目标的进行“盲”检测,因此其在资源调查、灾害救援等领域发挥了巨大的作用,是遥感领域非常重要的研究课题。本文针对高光谱遥感影像异常目标检测研究方向,首先总结阐述了目前高光谱异常目标检测问题的主要研究进展,根据算法原理的不同对现有主流算法进行了分类与总结,主要分成了基于统计学、基于数据表达、基于数据分解、基于深度学习等不同的种类的方法,并对每类方法的特点进行分析。随后通过对现有方法的调研、分析与总结,提出了数据库拓展、多源数据融合、算法实用化等高光谱异常检测研究未来发展的3个方向。  相似文献   

6.
谢福鼎  李壮 《测绘通报》2016,(9):60-62,72
分类是空间数据挖掘研究的主要问题之一。由于无监督分类忽视了样本信息,往往得不到理想的精度。而监督分类需要标记大量的样本点,带来了巨大的工作量。因此半监督分类逐渐成为空间数据挖掘的研究热点之一。本文通过改进FCM算法的目标函数和迭代过程,提出了一种新的半监督FCM算法(SFCM),该算法充分利用了有标签样本点在迭代过程中的作用。本文选取了在高光谱图像分类中广泛使用的Indian Pines和Pavia University两幅高光谱遥感影像作为试验对象。结果显示,随着有标签样本点比例的增加,分类精度也随之增加,且分类结果较好。  相似文献   

7.
王俊淑  江南  张国明  李杨  吕恒 《测绘学报》2015,44(9):1003-1013
提出了一种融合光谱和空间结构信息的高光谱遥感影像增量分类算法INC_SPEC_MPext。通过主成分分析(PCA)提取高光谱影像的若干主成分,利用数学形态学提取各主分量影像对应的形态学剖面(MP),再将所有主分量影像的形态学剖面归并联结,组成扩展的形态学剖面(MPext)。将MPext与光谱信息相结合以增加知识,最大限度地挖掘未标记样本的有用信息,优化分类器的学习能力。不断从分类器对未标记样本的预测结果中甄选置信度高的样本加入训练集,并迭代地利用扩大的训练集进行分类器构建和样本预测。以不同地表覆盖类型的AVIRIS Indian Pines和Hyperion EO-1Botswana作为测试数据,分别与基于光谱、MPext、光谱和MPext融合的分类方法进行比对。试验结果表明,在训练样本数量有限情况下,INC_SPEC_MPext算法在降低分类成本的同时,分类精度和Kappa系数都有不同程度的提高。  相似文献   

8.
刘冰  左溪冰  谭熊  余岸竹  郭文月 《测绘学报》2020,(10):1331-1342
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。  相似文献   

9.
刘冰  左溪冰  谭熊  余岸竹  郭文月 《测绘学报》1957,49(10):1331-1342
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。  相似文献   

10.
向量化的胶囊神经元和动态路由式的信息传递机制赋予了胶囊网络更强的特征表示能力.在遥感领域,基于胶囊网络的高光谱影像分类方法已经获得了较传统深度学习模型更为优异的分类结果.针对现有胶囊分类模型中存在的网络浅层、空谱联合信息利用不足等问题,本文利用卷积胶囊层、残差连接、三维卷积胶囊层构建了一种用于高光谱影像分类的新型深度胶...  相似文献   

11.
魏祥坡  余旭初  张鹏强  职露  杨帆 《遥感学报》2020,24(8):1000-1009
卷积神经网络CNN(Convolutional Neural Networks)具有强大的特征提取能力,应用于高光谱图像特征提取取得了良好的效果,双通道CNN模型能够分别提取高光谱图像的光谱特征和空间特征,并实现了特征的决策级融合。局部二值模式LBP(Local Binary Patterns)是一种简单但有效的空间特征描述算子,能够减轻CNN特征提取的压力并提高分类精度。为了充分利用CNN的特征提取能力及LBP特征的判别能力,提出一种双通道CNN和LBP相结合的高光谱图像分类方法,首先,采用1维CNN(1D-CNN)模型处理原始高光谱数据提取深层光谱特征,同时采用另一个1D-CNN模型处理LBP特征数据进一步提取深层空间特征,然后,将两个CNN模型的全连接层进行连接,实现深层光谱特征和空间特征的融合,并将融合特征输入到分类层中完成分类。实验结果表明,该方法在Indian Pines数据、Pavia University数据及Salinas数据上能够分别取得98.54%、99.73%、99.56%的分类精度,甚至在有限数量的训练样本条件下也能取得较好的分类效果。  相似文献   

12.
提出了一种基于深度学习技术的遥感分类方法,它能有效解决中分辨率影像在分类过程中出现的像元混分问题。研究选用2016年5月12日武汉市Landsat 7 ETM+遥感影像,基于GoogleNet模型中的Inception V3网络结构,借助迁移学习方法,构建出遥感分类模型,实现了对武汉市主城区4类典型地物(不透水层、植被、水体和其他用地)的自动分类提取,并将分类结果与传统最大似然分类(ML)结果进行了对比分析。研究表明:基于深度学习方法的遥感影像总体分类精度高达88.33%,Kappa系数为0.834 2,明显优于传统ML方法总体分类精度83%和Kappa系数0.755 0,而且有效抑制了地物在分类过程中出现的像元混分现象。  相似文献   

13.
为了实现地物精准分类,需要有效地提取与分析高光谱遥感图像中丰富的空—谱信息。提出一种适用于高光谱遥感图像分类的变异系数与卷积神经网络相结合(CV-CNN)的方法。这种新方法引入变异系数的思想来衡量高光谱遥感图像不同波段之间的相似性和差异性,从而提出类间变异系数(CVIE)和类内变异系数(CVIA)的概念。通过计算(CVIE)~2/CVIA的值来剔除高光谱遥感图像中的低效波段,然后提取每个像素的空一谱信息,并对其进行2维矩阵化操作,转化为便于卷积神经网络(CNN)输入的灰度图像,最后采用自行构建的适合于高光谱遥感图像分类的CNN模型进行分类。Indian Pines和Pavia University两组数据的实验结果表明,该方法在两种数据集下的总体精度分别达到98.69%和99.66%,有效地改善了高光谱遥感图像的分类精度。  相似文献   

14.
高分卫星遥感影像空间分辨率的提高,使得地物的光谱和纹理变得更加丰富和复杂,这给遥感影像的自动化分类带来严重挑战。因此,本文提出了一种结合主动学习和词袋模型的高分二号遥感影像分类方法。首先,对研究区域进行多尺度分割,建立影像分割对象集;然后,采用词袋模型构建影像对象的语义特征向量;最后,充分考虑位于分类边界的不确定性样本分布,迭代选择最优样本用于训练支持向量机,用于分类遥感影像。为了验证本文方法的有效性和稳健性,以山东省某市的高分二号遥感影像为试验数据进行了试验分析。结果表明,本文提出的方法可以有效地将研究区域分为水体、地面、植被和建筑物四类,正确率达到90.6%以上。  相似文献   

15.
深度学习在遥感影像分类与识别中的研究进展综述   总被引:5,自引:0,他引:5  
王斌  范冬林 《测绘通报》2019,(2):99-102,136
深度学习一直是机器学习和人工智能研究的热门主题,特别是将深度学习这一深层网络学习算法和遥感影像分类与识别联合起来,使得传统训练算法的局部最小性得以解决。本文首先简要介绍了遥感影像分类与识别算法的发展和经典算法的局限性,其次介绍了深度学习的几种主流算法并分析它们在遥感影像分类与识别处理方面的应用现状,最后对未来深度学习应用于遥感识别与分类趋势进行了展望。  相似文献   

16.
估算森林地上生物量(AGB)对于全球实现碳中和目标至关重要。本文以美国缅因州Howland森林为研究区域,借助地面实测样地数据,对比分析协同不同数据源(高光谱和LiDAR)和机器学习算法(随机森林、支持向量机、梯度提升决策树和K最邻近回归)的研究,以改善Howland森林的生物量估计精度。结果表明,采用LiDAR和高光谱植被指数变量模型的最佳精度分别为0.874和0.868,协同高光谱和LiDAR变量并采用梯度提升决策树回归模型的精度为0.927,即多源遥感数据要优于单一数据源。高光谱和LiDAR数据的协同使用对于提高类似于Howland地区或更广泛区域的生物量估计的准确性,具有普遍的适用性与一定的应用前景。  相似文献   

17.
基于多层形状特征提取与融合的城市高光谱影像解译   总被引:1,自引:0,他引:1  
以前的研究往往从像素光谱的角度来解译高光谱影像,忽略了像素间的空间上下文关系。本文提出一种基于像素和对象层形状特征提取与融合的方法,把多层形状特征和光谱信息用支持向量机(SVM)输出函数方法进行融合,用于提取城市高光谱影像的形状特性,利用影像的空间关系。实验用HydICE-DC航空高光谱数据对提出的方法进行了验证,结果表明:像素级形状指数能够提供比对象级形状指数更优的结果,但像素—对象级形状特征的融合,能够给出更高的精度。  相似文献   

18.
许晴  张锦水  张凤  盖爽  杨志  段雅鸣 《遥感学报》2022,26(7):1395-1409
基于大数据驱动的深度学习挖掘图像数据的规律和层次已成为遥感影像解译的研究热点。海量标签样本是训练深度学习模型的前提条件,但成本昂贵的人工标记样本限制了深度学习技术在遥感领域的应用。本文提出了一种基于弱样本的深度学习模型农作物分类策略:以GF-1影像为数据源,将传统分类器SVM分类结果视为弱样本,训练深度卷积网络模型DCNN (Deep Convolutional Neural Networks),获取辽宁省水稻和玉米的空间分布,分析弱样本的适用性。结果显示:测试集总体精度达到0.90,水稻和玉米F1分数分别为0.81和0.90;在不同地形地貌、复杂种植结构的农业景观下均表现出良好的分类效果;与SVM结果的空间一致性为0.90;当弱样本最大面积误差比例小于0.36时,弱样本仍适用于DCNN作物分类,结果的总体精度保持在0.86以上。综上,该策略一定程度上消除了深度学习模型对大量人工标记样本高度依赖的局限性,为实现大尺度农作物遥感分类提供了一种新途径。  相似文献   

19.
赵亮  王立国  刘丹凤 《遥感学报》2019,23(5):904-910
为降低高光谱遥感数据光谱空间的冗余度,提出一种快速的波段选择方法。该方法在波段子空间下进行,依次选择各子空间中方差最大的波段作为初始波段,设定目标函数,然后逐子空间替换波段使得目标性能更加优化,直至没有替换可以使得目标更优为止。在两个公开高光谱影像数据集上对比3种常用波段选择方法(ABC、AP、ABS)来验证提出方法的有效性,实验结果表明:(1)在印第安纳数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低22.04%、52.61%、55.71%,最佳指数分别提高0.58%、51.73%、0.95%,总体分类精度分别提高0.16%、1.39%、23.07%,在搜索效率上与同类型的ABC方法相比提高6.61%—69.02%;(2)在帕维亚大学数据上,本文方法与ABC、AP、ABS所选波段子集相比平均相关性分别降低2.38%、0.51%、32.83%,最佳指数分别提高1.34%、17.97%、12.92%,总体分类精度分别提高0.31%、0.69%、8.53%,在搜索效率上与同类型的ABC方法相比提高19.13%—86.34%。本文提出的波段选择方法能够选择合适的波段子集满足不同的应用需要,是一种有效的波段选择方法。  相似文献   

20.
为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输入的样本是否为真实数据;分类器用于对输入的样本进行分类。利用反向传播算法依次更新生成器、判别器和分类器的网络参数使损失函数最小,从而达到训练网络的目的。生成器和判别器能够模拟高光谱影像的样本分布来辅助训练分类器,因此能够提高高光谱影像的分类精度。分别采用Pavia大学和Salinas高光谱数据集进行分类试验,试验结果表明提出的分类方法能够在小样本条件下提高高光谱影像的分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号