首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract There are discrete masses of un-deformed metabasite within the blueschist series of the island of Syros. Greece. Around the margins of these masses are zonal sequences through rocks showing intracrystalline deformation but without a geometric fabric, to rocks with discrete and anastomosing shear zones, and finally to penetratively foliated rocks with isolated relics of the original undeformed texture. Textural relics suggest that this spatial sequence is at least qualitatively also a temporal sequence.
This progressive shear zone deformation took place concurrently with a glaucophane-epidote to eclogite reaction. The reaction pathways in the rocks that underwent the shear zone deformation can be compared with those in rocks of a similar composition that suffered a longer deformation history and show no relics of an undeformed parent. Although the final assemblages are in both cases the same, the pathways are different. These differences are in part related to reactions promoted by the change from local to bulk equilibrium on the onset of deformation in the rocks. They are also related to the crystallization and later breakdown during the sequence of progressive equilibration of a metastable phase, in this case an impure glaucophane.  相似文献   

2.
Microstructural analysis and microthermometry are useful methods for determining the deformation evolution. To address this issue, rheological behavior of quartz, feldspar and calcite in veins and host rocks during deformation, are presented in the mylonite zone of the dextral reverse Zamanabad Shear Zone (ZSZ), in northern part of Sistan Suture Zone (SSZ), in east of Iran. Microstructure evidences revealed two evolution stages of high and low temperature deformation. Quartz microstructures in the ZSZ show abundant evidences for early high-temperature plastic deformation (e.g. Bulging recrystallization (BLG)) which are as microstructures with SW directed ductile shearing in the central parts of the ZSZ. This shear zone shows progressively decreasing strain away from the central of shear zone toward the wall. High-temperature microstructures are overprinted partly or completely during shearing by the later low-temperature deformation (e.g. Pressure solution, fractures, veinlets). Microstructural observations of veins (quartz and calcite) confirms the results of microstructures in the host rock, as quartz veins occurred from peak metamorphic conditions (<400°C) and then in lower P–T conditions have been formed calcite veins (~250°C). According to microthermometric studies, two primary fluid groups are observed in quartz veins: (1) fluids trapped during peak deformation conditions, with higher-salinity, They were initially trapped at ~300–400°C, (2) smaller fluids by trapping of low-salinity inclusions at ~240–180°C that related to subsequent phases of shear zone exhumation in lower deep. Microthermometry results and microstructural analysis indicate deformation under lower greenschist facies conditions for the ZSZ, and then exhumation of the early of high-temperature rocks within regime of ductile-brittle transition to brittle.  相似文献   

3.
Foliation intersection/inflexion axes combined with pseudosections and garnet‐core isopleths reveal only 1.5 kbar variation in P–T conditions while plutons were emplaced regionally and deformation and metamorphism continued during orogenesis lasting 70 Myr. Tectonism ended with slight decompression into the cordierite stability field. Garnet growth was always overstepped by up to 100 °C occurring at conditions that staurolite growth was also possible. Episodic start, stop, start growth behaviour of both of these phases throughout this period did not result from the effects of bulk composition on their stability fields. Different porphyroblast growth patterns in same bulk composition and outcrop samples reveals reaction start/stop behaviour was controlled by the manner in which deformation partitioned through an outcrop. The regional isograds were established during the first period of bulk shortening near orthogonal to the orogen trend. They did not migrate across lower grade rocks during each of the subsequent periods of metamorphism in spite of dramatic changes in the direction of bulk shortening; rather they contracted slightly. During the youngest periods of orogenesis directed at a high angle to the current orogen trend the isograds were folded about axial planes parallel to the fold belt. The regional distribution of these isograds directly reflects the oldest period of pluton emplacement, with both controlled by orogen‐scale partitioning of bulk shortening at a high angle to the current orogen trend relative to intervening zones of transform‐like shear.  相似文献   

4.
Altered and mineralised rocks at Peak Hill, are confined to a 300–500 m wide, north-south striking, steeply dipping, shear zone that is flanked by the Mingelo Volcanics along its western side, and Cotton Formation siltstones along its eastern side. This shear zone is defined by extensive zones of cataclasite and strongly foliated micaceous schists in marked contrast to the largely undeformed nature of the adjacent rocks. Advanced argillic assemblages (quartz-kaolinite-pyrite ± alunite ± illite) occur throughout the core of the Peak Hill deposit. Propylitic assemblages, including albite, quartz, interlayered chlorite-smectite, illite and ankerite, and a narrow discontinuous zone of argillic (quartz-illite-pyrite) alteration are developed in the Mingelo Volcanics along the western side of the deposit. Propylitic, argillic and advanced argillic assemblages are overprinted by an internally zoned phase of phyllosilicate alteration that grades inwards from a peripheral sericite-clay-chlorite assemblage, through phyllic assemblages (muscovite/illite-pyrite ± paragonite) to a pyrophyllite-pyrite ± diaspore ± andalusite altered core. Au-Cu mineralisation is hosted by barite-pyrite veins that cut the advanced argillic assemblage, but pre-date the phyllosilicate-dominated alteration. Native Au (lacking Ag), calaverite, Te-rich tennantite-tetrahedrite (goldfieldite), chalcopyrite, covellite and chalcocite occur in the barite-pyrite veins. No ore-bearing minerals were detected in any of the alteration assemblages. The total gold content of the Peak Hill deposit is currently 720 K ounces and this includes 100 K ounces of unmined reserves. Within the shear zone phyllosilicate minerals are developed in strain shadows and partly define the stretching lineation associated with dip-slip movement. The zonation within the phyllosilicate assemblages mimics the geometry of bends in the shear zone and minor internal structures. These textures indicate that the phyllosilicate alteration developed synchronous with movement on the shear zone. Earlier advanced argillic alteration and mineralisation are developed in rocks derived from both sides of the shear zone. Hydrothermal activity associated with the earlier advanced argillic alteration was therefore either synchronous with juxtaposition of these distinct rock units, or occurred during a later phase of movement on the shear zone. Cross-cutting fibrous textures in the auriferous barite-pyrite veins indicate that repeated fracturing of the advanced argillic altered rocks accompanied development of successive generations of auriferous veins. Concentrations of auriferous veins are localised in steeply plunging shoots that are oriented parallel to the stretching lineation in the shear zone. These features all indicate movement on the host shear zone accompanied each phase of hydrothermal activity in the Peak Hill deposit. The location, alteration zonation and distribution of mineralised veins within the deposit are intimately controlled by deformation on the host shear zone synchronous with hydrothermal activity. The development of high-sulphidation hydrothermal systems synchronous with deformation along brittle-ductile shear zones is a predictable consequence of intrusive activity during deformation in areas characterised by a high geothermal gradient. The close relationship between tectonism and hydrothermal activity indicates that these deposits are likely to be located in the vicinity of regional-scale shear zones. Deposits are likely to be aligned parallel to the regional-scale structural “grain” and restricted to areas of conspicuous deformation as is the case at Peak Hill (and Temora, NSW). Aluminous alteration zones concentrated in the vicinity of regional-scale structures in the Carolina Slate Belt may be a further example of this style of hydrothermal activity. Received: 30 September 1996 / Accepted: 28 August 1997  相似文献   

5.
Structural investigations in the Precambrian Singhbhum Shear Zone of eastern India document an intimate relationship between micro- to meso-scale structures and the deformation history. Shear zone rocks are characterized by composite foliation, a well-developed stretching lineation, folds, shear planes, and quartz veins. These structures reflect thrusting of the Proterozoic north Singhbhum hanging wall block over the Archaean south Singhbhum footwall block. Microstructural analysis of multiple foliation and mylonitic rocks within the shear zone helps to define its progressive evolution. During progressive deformation, overprinting of microstructures resulted in incomplete transposition or complete erasing of previously formed structures and mineral assemblages, allowing room for new dynamic equilibrium structures to form. The dominant deformation mechanism was dissolution–recrystallization, with locally important fluid circulation responsible for transformation of the quartzo-feldspathic mass into phyllonite, and quartzites and schists into mylonite. Textural features suggest that the bulk deformation was non-coaxial, evolving from dominant pure shear in the early stage followed by simple shear in a single progressive strain history of the Singhbhum Shear Zone.  相似文献   

6.
In a sector placed in the SE part of the Alps–Apennine junction, a kilometre-scale shear zone has been identified as the Grognardo thrust zone (GTZ), which caused the NE-directed thrusting of metaophiolites (Voltri Group) and polymetamorphic continental crust slices (Valosio Unit) of Ligurian Alps onto Oligocene sediments of an episutural basin known as “Tertiary Piemonte Basin”. The structural setting of the GTZ is due to syn- to late-metamorphic deformation, followed by a brittle thrusting that occurred in the Late Aquitanian times and can thus be related to one of the main contractional tectonic events suffered by northern Apennines. The GTZ was then sealed by Lower Burdigalian carbonate platform sediments (Visone Formation). Transtensive faulting followed in post-Burdigalian times along NW–SE regional faults and displaced the previously coupled sedimentary and metamorphic units. The GTZ thus underwent a plastic-to-brittle evolution, during which carbonate-rich fluids largely sustained the deformation. In these stages, a complex vein network originated within both the metamorphic and sedimentary rocks. Field data and stable isotopic analyses (13C and 18O) of bulk rocks and veins show that fluid–rock interaction caused the carbonatisation of the rocks in the late-metamorphic stages and the cataclasis and recementation, by the action of isochemical cold carbonate groundwater during the thrusting events. Carbonate veins largely developed also during the transtensive faulting stages, with composition clearly different from that of the veins associated to thrust faults, as indicated by the strong depletion in 13C of carbonate fillings, suggesting the presence of exotic fluids, characterised by a high content of organic matter.  相似文献   

7.
北京地区云蒙山变质核杂岩在白垩纪阶段抬升的早期,伴随着沿四合堂剪切带由北向南的拆离滑脱和大型花岗闪长岩的垂向侵位,晚期变形发生在花岗闪长岩岩基周边及其邻近围岩中,形成云蒙山剪切带,并伴随大量同构造的花岗岩和伟晶岩岩脉灌入。剪切带中所有的岩脉都随时间发生了不同程度的变形,较老的岩脉形成紧闭的圆柱状褶皱,枢纽与剪切带的线理和面理接近平行。岩脉与剪切带中L-S组构的平行化作用主要是由于这种转动的结果。岩脉的成分和长英指数随它们的变形程度发生变化,说明持续的岩浆分异作用与韧性剪切变形是同时发生的。云蒙山剪切带由岩浆底辟引起的上盘岩石重力所驱动,并不断得到同构造侵位岩脉的补充,起到存储和不断改造侵位岩脉的作用。早期伸展体制下形成的四合堂剪切带局部遭受云蒙山剪切带的改造或复合。该地区的岩石、构造和同构造岩脉的变形几何学和运动学证据表明,太古宙结晶基底的抬升是下部岩浆底辟与上部地壳伸展拆离共同作用的结果。  相似文献   

8.
The Penjom gold deposit lies on the eastern side of the Raub‐Bentong Suture line within the Central Belt of Permo‐Triassic rocks, near Kuala Lipis, Pahang, Malaysia. The geology of the deposit is dominated by a sequence of fine‐ to coarse‐grained rhyolitic to rhyodacitic tuff, tuff‐breccia and a minor rhyolitic–rhyodacitic volcanic series, associated with argillaceous marine sedimentary rocks consisting of shale with subordinate shalely limestone of Padang Tungku Formation and Pahang Volcanic Series. Fine‐ to coarse‐grained tonalite and quartz porphyry intruded this unit. The main structural features of the area are north–south‐trending left‐lateral strike‐slip faults and their subsidiaries, which generally strike north–south and dip moderately to the east (350°–360°/40°–60°). Mineralization at the Penjom gold deposit is structurally controlled and also erratic laterally and vertically. The gold mineralization can be categorized as (i) gold associated with carbonate‐rich zones hosted within dilated quartz veins carrying significant amount of sulfides; (ii) gold disseminated within stockwork of quartz–carbonate veins affiliated with tonalite; and (iii) gold often associated with arsenopyrite and pyrite in quartz–carbonate veins and stringers hosted within shear zones of brittle–ductile nature in all rock types and in brittle fractured rhyodacitic volcanic rocks. Sphalerite, chalcopyrite, tetrahedrite and pyrrhotite are the minerals accompanying the early stage of gold mineralization. These minerals also suffered from local brittle deformation. However, most of the gold mineralization took place after the deposition of these sulfides. Galena appears somewhat towards the end of gold mineralization, whereas tellurium and bismuth accompanied gold contemporaneously. The gold mineralization occurred most probably due to the metamorphogenic deformational origin concentrated mostly in the shear zone. The mineralization is strongly controlled by the wall rock (e.g. graphitic shale), the sulfide minerals and fluid–rock interaction.  相似文献   

9.
Shear and extensional veins formed during the reactivation of the Magdala shear system at Stawell in western Victoria, Australia, contribute to the formation of the auriferous Central and Basalt Contact lodes. Within this shear system is a range of fault rocks accompanied by steep-dipping (>65°) quartz-rich laminated shear veins and relatively flat-lying extensional veins. Both vein sets appear to have been a primary source for the host rock permeability during fluid flow in a regime of significant deviatoric stresses. The macro- and microstructures suggest that the dilatancy, that produced mineralized veins, formed under conditions of overpressure generated by fluid infiltration late in a tectonic regime. A new microfabric analysis technique is used to investigate the quartz-rich veins, which allows rapid integration of the microstructure with the crystallographic preferred orientations (CPOs). Both the shear and extensional quartz veins have a random CPO with ∼120° dihedral angles between the quartz–quartz grains, which is typical of a metamorphic equilibrium microfabric. The microstructures indicate that the quartz has undergone extensive grain adjustment in the solid-state, with grain shape and size affected by interfacial solution (pressure solution) effects. These features are consistent with inferences from experimental rock deformation studies, where grain boundary migration is enhanced in a water-rich environment. The onset of solution-transfer processes (pressure solution) developed as the quartz microfabric stabilized and continued to modify the CPO and microstructure significantly. It is concluded that grain growth and pressure solution are coupled diffusive mass transfer processes, related to fluctuations in pore fluid pressures in a region undergoing deformation at near lithostatic pressures.  相似文献   

10.
In rocks possessing a strong planar fabric, shear bands of constant shear sense and oriented at an oblique angle to the foliation are considered by many authors to be characteristic of a non-coaxial bulk deformation history, whereas conjugate shear bands are considered to indicate coaxial shortening. However, in two areas where bulk deformation history appears to be non-coaxial (Cap Corse, Corsica and Ile de Groix, Brittany), conjugate shear bands are observed. In order to investigate this problem, experiments were performed by bulk simple shearing using Plasticine as a rock analogue. When slip between layers of the model is permitted, shear bands of normal-fault geometry form with both the same and opposite shear sense as the bulk simple shearing at approximately the same angle with the layering (40°) irrespective of layer orientation in the undeformed state (for initial orientations of 50, 30 and 15°). Shear bands are initially formed within individual layers and may propagate across layer interfaces when further movement along these is inhibited. The existence of conjugate shear bands in Corsica and Ile de Groix is therefore not incompatible with a model of bulk simple shearing for these two regions. In field studies, one should perhaps exercise care in using shear bands to determine the kind of motion or the sense of bulk shearing.  相似文献   

11.
The northern Snake Range, east-central Nevada, is one of the metamorphic core complexes of the Sevier hinterland. Within the range a major décollement separates an ‘upper plate’ composed of brittlely deformed Paleozoic sedimentary rocks (mostly carbonates), from a ‘lower plate’ composed of metamorphic Upper Precambrian-Lower Cambrian rocks, intruded by gneissic granites. A study of the geometry and kinematics of structures and fabrics at outcrop scale and in thin sections indicates that: the northern Snake Range décollement has been a zone of intense non-coaxial E-vergent shear and transport in a ∼- N115°E direction. Outstanding asymmetric boudinage within the marble sheet capping the lower plate testifies for late ductile shear strains (γ) of at least 20. The interface between brittlely and ductilely deformed rocks seems too sharp to represent a regional rheological transition, but might result from two distinct phases of deformation. Ductile deformation in and below the décollement could have occurred before brittle deformation in the upper plate. Brittle faulting in the upper plate related to Basin and Range extension reactivated the upper surface of the ductile shear zone. High topographic relief on the normal faults bounding the range triggered the slide of olistolites from the upper plate into the adjacent Oligo-Miocene basins.  相似文献   

12.
安徽张八岭地区西冷岩组早期构造变形特征   总被引:3,自引:0,他引:3       下载免费PDF全文
安徽张八岭地区西冷岩组早期构造变形复杂,主要表现为褶皱以及与褶皱变形密切相关的韧性剪切变形。野外调查表明,该地层中至少发育3期褶皱变形,其中F1为北西向韧性剪切褶皱;F2为向南南西倾伏的纵弯褶皱;F3为近东西向的宽缓褶皱。F1与F:联合制约了西冷岩组岩层展布的总体格局。显微构造,特别是岩石的磁性组构特征证明了区内曾发生过多期构造变形,且有两期最为显著,即早期的水平剪切和随后发生的侧向挤压。本文重点阐述上述褶皱变形的几何学特征,并进行运动学和动力学分析。  相似文献   

13.
藏南曲水地区鸡公-色甫韧性剪切带系统的运动学和动力学研究,不仅对造山带构造研究具有重要理论意义,而且对青藏高原中-南部区域地质研究具有推进作用.作为藏南冈底斯岩浆带曲水岩基中的重要断裂构造,曲水韧性剪切带经历了新生代以来的大规模构造变形,其中走滑剪切作用最为显著,整体表现为右行走滑为主.通过对曲水剪切带中的构造片岩、初糜棱岩、糜棱岩以及长英质脉体等野外观测并结合室内镜下薄片以及石英EBSD(electron backscatter diffraction)组构分析,认为曲水剪切带主要经历了一期韧性变形事件.根据石英-长石变形矿物对并结合石英EBSD组构分析得出,构造变形发生的温度大约为500~550 ℃,高绿片岩相到角闪岩相.剪切带内普遍发育有不对称的褶皱、构造透镜体、σ碎斑、S-C组构和石香肠等变形组构,显示出右行走滑的特征.对研究区34组糜棱面理和9组拉伸线理进行极射赤平投影,糜棱面理的优选方位约为355°∠70°,拉伸线理产状约为95°∠8°.此外,在糜棱岩中发育两类长英质脉体,根据野外分布特征、显微组构、锆石成因学以及岩石地球化学特征综合研究认为,两类长英质脉体为同构造剪切脉体,其年代学可以对剪切带的形成时限起到很好的制约.通过对两套长英质脉体分别进行LA-ICP-MS锆石U-Pb定年,得到了38.67±0.88 Ma和35.05±0.29 Ma两组加权平均年龄,表明了曲水剪切带韧性变形发生于35~38 Ma的始新世末期(普利亚本期).这一年龄值处于印度-亚洲大陆晚碰撞期,因此曲水韧性剪切带右行走滑事件可能是印度板块持续向北俯冲,构造应力在欧亚板块边缘释放引起的陆内构造响应.   相似文献   

14.
The geometry and age relations of syntectonic veins within calcareous rocks of one imbricate sheet within a thrust belt in the external French Alps, are described.The earliest veins developed during the main ductile deformation by cleavage-parallel extension. The majority of the syntectonic veins developed towards the end of the deformation, and after the formation of second folds. They include a conjugate set of normal shears, an abundant set of upright extension veins, and en echelon sets.The dominantly simple shear strain making up the main ductile phase of deformation occurred by a mechanism of grain to grain pressure solution. The stretching lineation records the overall direction of thrust sheet movement. A change in the microchemical mechanism of pressure solution is thought to have caused the change from first to second phase deformation as recorded by slaty cleavage and crenulation folds in the field. From the shear and vein geometries, directions of principal stress have been inferred. The directions rotated throughout the deformation, the maximum principal stress being inclined to bedding during simple shear strain, becoming normal to bedding during the phase of abundant vein growth, and becoming vertical at the very end of the deformation.  相似文献   

15.
Ductilely deformed veins consisting of quartz+andalusite, in which the andalusite is partially replaced by fibrous sillimanite, locally occur in garnet–sillimanite schist near a margin of the Niğde metamorphic core complex in south-central Turkey. Mineral assemblages, reaction textures and structural features of the veins record low-pressure–high-temperature deformation during exhumation of mid-crustal rocks. The partial replacement of andalusite by sillimanite may indicate a late-stage increase in temperature and/or fluid pressure, possibly related to Miocene magmatism, during extensional unroofing of the core complex. Aluminosilicate-bearing veins are observed at the eastern margin of the massif where metapelitic rocks were deformed during unroofing of the core complex. Veins formed in aluminous rocks where deformation-enhanced permeability allowed fluid flow during extensional shear. The cm-scale veins are typically boudinaged and form asymmetric lenses concordant with the host rock foliation and are parallel to the down-dip lineation defined by sillimanite and stretched biotite. Aluminosilicate-bearing boudins record top-to-the-east shear sense, which is compatible with the extensional shear sense displayed by structures in the host rock.  相似文献   

16.
The grain‐ and outcrop‐scale distribution of melt has been mapped in anatectic rocks from regional and contact metamorphic environments and used to infer melt movement paths. At the grain scale, anatectic melt is pervasively distributed in the grain boundaries and in small pools; consequently, most melt is located parallel to the principal fabric in the rock, typically a foliation. Short, branched arrays of linked, melt‐bearing grain boundaries connect melt‐depleted parts of the matrix to diffuse zones of melt accumulation (protoleucosomes), where magmatic flow and alignment of euhedral crystals grown from the melt developed. The distribution of melt (leucosome) and residual rocks (normally melanocratic) in outcrop provides different, but complementary, information. The residual rocks show where the melt came from, and the leucosomes preserve some of the channels through which the melt moved, or sites where it pooled. Different stages of the melt segregation process are recorded in the leucosome–melanosome arrays. Regions where melting and segregation had just begun when crystallization occurred are characterized by short arrays of thin, branching leucosomes with little melanosome. A more advanced stage of melting and segregation is marked by the development of residual rocks around extensive, branched leucosome arrays, generally oriented along the foliation or melting layer. Places where melting had stopped, or slowed down, before crystallization began are marked by a high ratio of melanosome to leucosome; because most of the melt has drained away, very few leucosomes remain to mark the melt escape path — this is common in melt‐depleted granulite terranes. Many migmatites contain abundant leucosomes oriented parallel to the foliation; mostly, these represent places where foliation planes dilated and melt drained from the matrix via the branched grain boundary and larger branched melt channel (leucosome) arrays collected. Melt collected in the foliation planes was partially, or fully, expelled later, when discordant leucosomes formed. Leucosomes (or veins) oriented at high angles to the foliation/layering formed last and commonly lack melanocratic borders; hence they were not involved in draining the matrix of the melting layer. Discordant leucosomes represent the channels through which melt flowed out of the melting layer.  相似文献   

17.
The Salado River fault (SRF) is a prominent structure in southern Mexico that shows evidence of reactivation at two times under different tectonic conditions. It coincides with the geological contact between a structural high characterized by Palaeozoic basement rocks to the north, and an ~2000 m thick sequence of marine and continental rocks that accumulated in a Middle Jurassic–Cretaceous basin to the south. Rocks along the fault within a zone up to 150 m across record crystal-plastic deformation affecting the metamorphic basement of the Palaeozoic Acatlán Complex. Later brittle deformation is recorded by both the basement and the overlying Mesozoic sedimentary rocks. Regional features and structural textures at both outcrop and microscopic scale indicate two episodes of left-lateral displacement. The first took place under low-to medium-grade P-T conditions in the late Early Jurassic (180 Ma) based on the interpretation of 40Ar/39Ar ratios from muscovite within the fault zone; the second occurred under shallow conditions, when the fault served as a transfer zone between areas with differing magnitudes of shortening north and south of the fault. In the southern block, fold hinges were dragged westward during Laramide tectonic transport to the east, culminating in brittle deformation characterized by strike–slip faulting in the Mesozoic sedimentary rocks. North of the fault, folds are not well defined, and it is clear that the fold hinges observed in the southern block do not continue north of the fault. Although the orientation and kinematics of the SRF are similar to major Cainozoic shear zones in southern Mexico, our new data indicate that the fault had become inactive by the time of Oligocene volcanism.  相似文献   

18.
Late Neoproterozoic collision between East and West Gondwana concentrated transpressional deformation in the juvenile crust of the Nubian Shield in Eritrea along at least two steep, curvilinear crustal-scale belts, the Augaro-Adobha Belt (AAB) and the Asmara-Nakfa Belt (ANB). Volcanosedimentary rocks dominantly metamorphosed at greenschist-facies conditions characterize the belts. Each of these belts comprises a complex network of syn-metamorphic shear-fold structures. Steep strike-slip shear zones and accompanying vertical to steeply plunging folds dominated the latest phase of deformation. Quartz vein-hosted gold ± sulphide type and volcanic-hosted massive sulphide type deposits and occurrences are either deformed or hosted by these steep shear zones and folds. The deposits are broadly grouped into three major mineral districts, Asmara, Augaro and Bisha. The Asmara district, the main focus of this study, is located where the southern part of the Asmara-Nakfa Belt changes in strike from NNE–SSW to NNW–SSE. Combined field, micro-structural, and magnetic fabric studies are conducted in the sheared host rocks of a series of the mineral deposits and/or occurrences of the Asmara mineral district. These combined studies revealed that the Asmara area was subjected to a transpressional deformation accommodated in a complex and curved flower structure. Both the quartz vein and massive sulphide types of deposits are sheared, folded and generally spatially associated. The ore-bearing quartz veins are often concentrated along dilatant-extensional en-echelon fracture arrays in reverse and normal sense shear zones, and they either cut through or structurally overlie, the massive sulphide deposits. The massive sulphides that formed at the same time as the Neoproterozoic volcanosedimentary rocks were later deformed and metamorphosed with them. This study, along with previous investigations, further implies that the Asmara area represents an intra-arc, palaeo-oceanic trough or basin located over a west-northwestward dipping subduction zone that subsequently underwent transpression. The transpressional belts track the general locations of such oceanic basins into which ore-bearing fluids that resulted in various phases of vein type deposits were channeled. This study can help to locate new prospects and develop existing ore deposits and/or occurrences in Neoproterozoic Eritrea and elsewhere in areas of similar structural setting.  相似文献   

19.
The late Archaean Closepet granite of southern India is bounded by N-S trending shear zone. At the southern end of the granite both charnockite and granite veins are spatially associated with ductile shears. These shears continue further north and are confined to the contact zones in the central part of the granite outcrop. The main component of the shear zone are highly deformed granite sheets, augen gneisses and mylonites. Field observations and microstructural fabric of mylonites indicate a dextral sense of shear movement. Field evidence suggests that shear deformation was active throughout the evolution of the Closepet granite  相似文献   

20.
Arrays of quartz gash-veins in small angle (40°), conjugate shear zones (type 1 arrays of Beach) are well-developed in the Upper Devonian Merrimbula sandstone of the south coast region of New South Wales, Australia. We argue that vein and cleavage geometry support an origin of the veins as tension fractures in a rotated secondary stress field rather than a primary shear origin as advocated by Beach. We also conclude that the veins develop in dilational shear zones under high fluid pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号