首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nisa-Alburquerque granitic batholith (southern Variscan Belt, Iberian Peninsula) has been studied by petrological, structural and geophysical approaches, obtaining contrasting models for its deep structure and emplacement sequence. In order to test these models and gain knowledge on the thermal increase induced by the intrusion, we have studied its contact aureole, which was developed in similar country rock lithologies (mica schists alternating with metasandstones and feldespatic schists) all along the northern external contact of the batholith. Our results indicate no change in metamorphic grade and some variations in aureole width, which narrows toward the western sectors of the batholith. Cordierite is the only contact metamorphic mineral developed together with a high temperature biotite probably related to the granite thermal input. By considering these new data, together with zircon saturation temperatures within the granite and previous petrological and geophysical studies, we propose a model in which the feeder zones of the granitic magmas were an eastern main one and a western secondary one. We have also made comparisons of the metamorphic grade in the country rocks and the xenoliths within the granite. Most of the xenoliths have the same metamorphic facies as the country rocks (Crd-zone), though some of them contain slightly different assemblages (And + Crd), which could be explained in different ways: (1) differences in the primary schist compositions, (2) increased time-span of xenoliths in contact with the melt and (3) xenolith incorporation at slightly higher depths during final granite ascent.  相似文献   

2.
The Wyangala Batholith, in the Lachlan Fold Belt of New South Wales, is pre‐tectonic with respect to the deformation that caused the foliation in the granite, and was emplaced during a major thermal event, perhaps associated with dextral shearing, during the Late Silurian to Early Devonian Bowning Orogeny. This followed the first episode of folding in the enclosing Ordovician country rocks. Intrusion was facilitated by upward displacement of fault blocks, with local stoping. Weak magmatic flow fabrics are present. After crystallization of the granite, a swarm of mafic dykes intruded both the granite and country rock, possibly being derived from the same tectonic regime responsible for emplacement of the Wyangala Batholith. A contact aureole surrounding the granite contains cordierite‐biotite and cordierite‐andalusite assemblages. Slaty cleavage produced in the first deformation was largely obliterated by recrystallization in the contact aureole.

Postdating granite emplacement and basic dyke intrusion, a second regional deformation was accompanied by regional metamorphism ranging from lower greenschist to albite‐epidote‐amphibolite facies, and produced tectonic foliations, termed S and C, in the granite, and a foliation, S2, in the country rocks. Contact metamorphic rocks underwent retrogressive regional metamorphism at this time. S formed under east‐west shortening and vertical extension, concurrently with S2. C surfaces probably formed concurrently with S and indicate reverse fault motion on west‐dipping ductile shear surfaces. The second deformation may be related to Devonian or Early Carboniferous movement on the Copperhannia Thrust east of the Wyangala Batholith.  相似文献   

3.
广西海洋山花岗岩体侵位构造特征   总被引:1,自引:0,他引:1  
李晓峰  华仁民 《岩石学报》2000,16(3):371-379
花岗岩是大陆地壳的重要组成部分,是地球动力学演化的示踪剂。花岗岩体侵位构造的研究对于揭示花岗岩体的变形历史和侵位机制具有重要的科学价值。本文研究了海洋山花岗岩体的内部构造、与岩浆侵位应力有的围岩构造及热接触变质带特征,探讨了岩体和围岩的应变状态。研究发现,从岩浆侵位到冷凝固结,海洋山花岗岩体经历了液态流动、塑性变形和“半固态”冷凝阶段的演化。岩体各单元的应变类型分别是单轴压扁、平面应变、单轴压缩,  相似文献   

4.
Anisotropy of magnetic susceptibility (AMS) analysis has been carried out in the thermometamorphic aureole surrounding the Late Miocene Monte Capanne pluton (Elba Island, Central Italy). The identification and separation of the main carriers of the magnetic susceptibility by low-temperature and high-field AMS measurements demonstrate that a correct knowledge of the magnetic fabric is needed in order to use AMS for tectonic interpretations. Magnetic fabric data, combined with structural data from the aureole, and their comparison with data from the pluton itself, were used to constraint the mode of pluton emplacement. Results document an intimate linkage between the magmatic flow pattern and the syn-metamorphic fabrics acquired during pluton emplacement in the host rocks. The magnetic/structural fabric in the aureole rocks is dominated by flattening deformation and no systematic relationship with any regional tectonic feature is observed. These results suggest that local processes induced by magma ascent in the upper crust might have played a primary role in space generation for pluton emplacement in the Tuscan Magmatic Province, suggesting a revaluation of the modes of pluton emplacement during the post-orogenic evolution of the northern Apennine system as a whole.  相似文献   

5.
The emplacement of the Manaslu leucogranite body (Nepal, Himalaya)has been modelled as the accretion of successive sills. Theleucogranite is characterized by isotopic heterogeneities suggestinglimited magma convection, and by a thin (<100 m) upper thermalaureole. These characteristics were used to constrain the maximummagma emplacement rate. Models were tested with sills injectedregularly over the whole duration of emplacement and with twoemplacement sequences separated by a repose period. Additionally,the hypothesis of a tectonic top contact, with unroofing limitingheat transfer during magma emplacement, was evaluated. In thislatter case, the upper limit for the emplacement rate was estimatedat 3·4 mm/year (or 1·5 Myr for 5 km of granite).Geological and thermobarometric data, however, argue againsta major role of fault activity in magma cooling during the leucograniteemplacement. The best model in agreement with available geochronologicaldata suggests an emplacement rate of 1 mm/year for a relativelyshallow level of emplacement (granite top at 10 km), uninterruptedby a long repose period. The thermal aureole temperature andthickness, and the isotopic heterogeneities within the leucogranite,can be explained by the accretion of 20–60 m thick sillsintruded every 20 000–60 000 years over a period of 5Myr. Under such conditions, the thermal effects of granite intrusionon the underlying rocks appear limited and cannot be invokedas a cause for the formation of migmatites. KEY WORDS: granite emplacement; heat transfer modelling; High Himalayan Leucogranite; Manaslu; thermal aureole  相似文献   

6.
Abstract Petrological study of highly strained carbonate and pelitic rocks within the contact aureole surrounding the western part of the Papoose Flat pluton yields thermal profiles (plots of metamorphic temperature versus distance) across the aureole that show temperature gradients which are relatively flat and narrow (<100m). The gradients occur close to the contact and indicate a slight decrease in temperature from 500–550°C at the pluton/wall rock contact to 450–500°C at the outer margin of the aureole. One thermal profile across low-strain metasedimentary rocks located in the southern part of the aureole shows that thermal effects from emplacement extend no further than 600 m from the contact. Coexistence of andalusite and cordierite in pelitic rocks of the aureole constrain pressures to <4 kbar. Thermal modelling using an analytical solution of the conductive heat flow equation for a rectangular-shaped pluton reproduces the observed thermal maxima and profile shape. Conductive rather than convective cooling also is supported by isotopic and field evidence for limited fluid flow along the strongly deformed margin of the pluton. Simple thermal models coupled with observed high-temperature deformation features and a measured 90% attenuation of stratigraphic units in the plastically deformed western part of the pluton's aureole indicate that strain rates may have been of the order of 10-12s-1. Evidence for episodic heating, such as two distinct generations of andalusite growth in pelites from the aureole, alternatively may indicate a longer heating event and, therefore, slower strain rates. Thermal models also indicate that parts of the pluton still may have been above the solidus during deformation of the pluton margin and aureole.  相似文献   

7.
为了分析望云山复式花岗岩体侵位时的动力学状态,对该岩体进行了岩石磁组构参数测定,磁化率的变化特征反映了望云山得式岩体侵位过程中构造环境的变化和单元岩石的暗色矿物组成及其性程度的高低;磁面理的产状与岩体形态和岩石单元分布相吻合,清晰地反映了不同构造单元岩浆侵位方式;磁线理指示岩体的侵位中心,线理表现形式不一,标示侵位方式与受构造应力的不同;晚期岩浆对早期岩浆中的磁线理有一定的改造作用,磁线理方向基本上反映了岩浆原始流动状态;从磁化率椭球参数可以看出岩浆侵位的应变状态;岩浆应力场分布体现了岩浆侵位方式及其所处构造环境,岩体岩石磁组构参数佐证了区域构造,围岩构造及岩体内部其他构造所反映的岩体侵位机制。  相似文献   

8.
南秦岭晚三叠世胭脂坝岩体的磁组构特征及意义   总被引:1,自引:0,他引:1  
胭脂坝岩体是秦岭造山带内具典型代表性意义的晚三叠世花岗岩,已有的年代学和地球化学研究对岩体的侵位机制有着不同的认识。采用磁组构方法研究了该岩体的内部组构特征,并结合区域构造探讨了岩体的侵位机制。结果显示,胭脂坝岩体51个采点、348个样品的平均体积磁化率(Km)值普遍小于100 μSI,总体较低。磁滞回线和热磁曲线特征表明,岩体磁组构主要由顺磁性矿物控制。大部分样品的校正磁化率各向异性度(PJ)值小于1.10,平均为1.06,表现出低各向异性度的总体特征。样品磁化率椭球形态参数(T)值多大于0,磁化率椭球体以压扁椭球为主。综合分析认为,岩体的磁组构是典型的岩浆组构,记录了岩浆侵位的流动构造。岩体磁组构以东西向中低角度倾伏的磁线理和南北向倾伏的磁面理为总体特征,磁线、面理轨迹揭示出岩浆自西向东的侵位流动。这样的岩浆侵位过程应与中、浅部地壳的走滑挤压构造相关,岩体侵位时造山带处于同碰撞构造环境。  相似文献   

9.
武功山热穹隆,以加里东造山期复式花岗岩为中心,南华一寒武系遭受区域变质形成变质矿物分带,环绕岩体分布,中生代以来伸展形成的韧脆性断裂系统构成外环,共同组合形成穹窿状构造。造山早期(463.2±2.3Ma),初始重熔岩浆与深埋变质围岩交代形成原地型英云闪长质“混染岩浆”,岩浆上升中,硅铝质组分加入使酸度增加,过渡为花岗闪长质岩浆,并产生岩体边缘混合岩。造山晚期(409.4±5.1Ma)演化为正常花岗岩,构成同源岩浆成分演化序列,并伴有明显构造应力变形。中生代伸展一岩浆作用的复合叠加,进一步强化了热穹窿的构造背景,大致在早白垩世末基本定型。  相似文献   

10.
The ascent and emplacement of granites in the upper crust is a major geological phenomenon accomplished by a number of different processes. The active processes determine the final geometry of the bodies and, in some favourable cases, the inverse problem of deducing mechanisms can be undertaken by relying on the geometry of plutons. This is the case of the La Bazana granitic pluton, a small Variscan igneous body that intruded Cambrian rocks of the Ossa-Morena Zone (SW Iberian Massif) in the core of a large late upright antiform. The granite shows no appreciable solid-state deformation, but has a late magmatic foliation whose orientation, derived from field observations, defines a gentle dome. The regional attitude of the main foliation in the country rock (parallel to the axial plane of recumbent folds) is NW–SE, but just around the granite, it accommodates to the dome shape of the pluton. Flattening in the host rock on top of the granite is indicated by boudinaged and folded veins, and appears to be caused by an upward pushing of the magma during its emplacement. The dome-shaped foliation of the granite, geometrically and kinematically congruent with the flattening in the host rock, can be related in the same way to the upward pushing of the magma. The level of final emplacement was deduced from the mineral associations in the thermal aureole to be of 7–10 km in depth. Models of the gravity anomaly related to the granite body show that the granite has a teardrop–pipe shape enlarged at its top. Diapiric ascent of the magma through the lower middle crust is inferred until reaching a high viscous level, where final emplacement accompanied by lateral expansion and vertical flattening took place. This natural example suggests that diapirism may be a viable mechanism for migration and emplacement of magmas, at least up to 7–10 km in depth, and it provides natural evidence for theoretical discussion on the ability of magmatic diapirs to pierce the crust.  相似文献   

11.
小秦岭文峪和娘娘山花岗岩体锆石SHRIMP U-Pb年龄及其意义   总被引:13,自引:0,他引:13  
对小秦岭文峪和娘娘山花岗岩体进行的锆石SHRIMP U-Pb定年和岩石地球化学分析结果表明,文峪和娘娘山黑云母二长花岗岩体属于Ⅰ型花岗岩,是太古宙太华群高级变质岩系经部分熔融的产物。它们的成岩年龄分别为138.4±2.5 Ma和141.7±2.5 Ma,略早于本区拆离伸展活动的时限,暗示了中下地壳部分熔融形成的岩浆热穹窿和花岗质岩浆在上地壳的大面积侵位导致了小秦岭变质核杂岩的发育。花岗岩体的成岩年龄都早于本区金矿床的主期成矿时代,从时间上表明了花岗质岩浆活动与金矿成矿作用无直接关系。  相似文献   

12.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

13.
Large ultramafic masses along the western margin of the Alboran Sea were emplaced in two stages. The first, “hot” stage of emplacement was post-Triassic and pre-Oligocene in age. The second, “cold” stage of emplacement was of Oligo-Miocene age.The first stage caused the development of polymetamorphic aureoles in the surrounding crustal rocks. Metamorphic conditions in the contact zone of the composite aureole series changed from HP-HT to LP-HT. The HP-HT phase of metamorphism created a primary dynamo-thermal aureole. LP-HT metamorphism took place under mainly static conditions. Present contact relations are mainly defined by the amount of secondary dislocation during hot emplacement of mantle off-shoots from the base into the higher levels of the crust. Where the primary contacts between crustal and ultramafic rocks have remained undisturbed by secondary emplacement aureoles with kinzigite series were developed. Although these rocks have partly recrystallized under LP-HT conditions, their original HP-HT characteristics are largely preserved. In other localities, however, secondary dislocation brought mantle rock in contact with lower grade zones of the primary aureole and caused the development of cordierite- and feldspar-rich hornfelses and migmatites of the cordierite-feldspar hornfels series along the new contacts of the ultramafic rocks.Metapelites with composite facies series, very similar to aureole rocks of the Serranía de Ronda but not associated with high-temperature ultramafics, are found in scattered exposures along the Spanish coast east of the Serranía de Ronda over a distance of approximately 300 km.Cold thrusting during the second stage of emplacement obscured the relations between aureole and ultramafic rocks and gave rise to tectonic contacts of younger age (imbrication). In many places broad zones of mylonite and numerous serpentine lenses formed along the younger thrust planes.  相似文献   

14.
At least sis or perhaps seven types of contact metamorphism may be distinguished in nature (see Table 1). They differ from each other by a set of metamorphic facies in the exocontact aureoles, also by thermodynamic conditions of metamorphism. The manifestation of some types of metamorphism depends chiefly on magma temperature and composition, on the initial temperature of the country rocks (prior to contact metamorphism) and on the depth of the intrusive formation. The movement of magma through the intrusive channel (chamber) and the kinetic peculiarities of metamorphism exert additional influence on metamorphic conditions.Since the temperature elevation with depth corresponds in a general way to the increase in the lithostatic pressure, the maximum temperature levels attained at the direct intrusive contact must differ for various pressure levels (or depths). The two series of contact metamorphic rooks may be distinguished by their pressure: 1. common hornfelsic rock low-pressure series (types of metamorphism 1–4, Table 1), and 2. thermal transformed gneissous rock series metamorphosed under moderately high pressure (types 5–6, Table 1). The initial temperature of the country rock is low in the first series. It may apparently be discounted in certain cases. The usual non-abyssal contact low-pressure metamorphism (the proper contact metamorphism) depends essentially on magma temperature and composition, while in the second series, the initial temperature of the country rocks may be rather high. This and the effect of the intrusive heat and high lithostatic pressure results in rock transformation under conditions of the regional metamorphism of the facies (under moderately high pressure).Since superposition of the local temperature field on a regional high-temperature field in the neighbourhood of intrusives (in deep conditions) results in an increase in the thickness of the contact aureole, Ingersoll's criterion (the ratio of the thickness of the aureole to the thickness of the intrusive body) may be helpful for distinguishing abyssal from non-abyssal contact metamorphism. The values of this criterion cannot exceed 0.2–0.3 for the non-abyssal contact metamorphism.  相似文献   

15.
处于扬子与华夏古板块加里东期拼贴带的武功山热穹隆,以造山期变形花岗岩为中心,南华一寒武系遭受绿片岩相一低角闪岩相变质并形成变质矿物分带,环绕岩体分布,与中生代以来伸展形成的脆性断裂系统构成外环,共同组合形成屹立于晚古生代地层分布区的穹隆状构造。在区域递增变质带基础上,造山早期,深部初始重熔岩浆与深埋的变质岩发生交代形成原地型英云闪长质“混染岩浆”,岩浆上浸过程中,活动组分不断作用于围岩,致使围岩的成分、结构构造产生重新调整,形成岩体边缘混合岩。同时,由于硅铝质围岩组分加入,酸度增加,而渐变过渡为花岗闪长质岩浆。造山晚期,进一步演化为岩浆型正常花岗岩,并呈套叠状侵入于早期岩体之中。从早到晚构成同源岩浆演化系列,并发育明显构造应力变形。热穹隆区加里东期形成递进渐增变质一岩体边缘混合一变形花岗岩“三位一体”分布格局。中生代伸展一岩浆作用的复合叠加,进一步强化了热穹隆的构造背景。大致在旱白垩世末基本定型。  相似文献   

16.
刘耀荣  贾宝华 《地质通报》2000,19(2):159-165
根据板杉铺岩体的基本特征 (形态、产状、主体单元的空间分布、接触关系 )、围岩构造 (褶皱、断层、片理等 )、内部构造 (片麻理、包体、断层、节理、岩脉、岩石磁性组构 )等构造样式认为 ,板杉铺岩体侵位经历了重熔岩浆的产生→底辟上升→多次脉动式上侵的逆旋—气球膨胀的过程 ,为花岗岩体构造样式研究与就位机制分析开拓了新的思路。  相似文献   

17.
The Huamenlou pluton,is an elongated granite intrusion with high aspect ratio,emplaced within the southern margin of the North Qinling(central China).Here we investigate this pluton through multiple techniques including the fabric study,microstructural observation and zircon geochronology.Our zircon U-Pb data confirm that the granite crystallized at ca.462 Ma which is consistent with the ages of other linear plutons in North Qinling.Microstructural observations of the Huamenlou granites illustrate that the pluton has undergone superimposed deformation during its emplacement,from magmatic to hightemperature solid state conditions.The internal fabric obtained by anisotropy of magnetic susceptibility(AMS)and shape preferred orientation(SPO)show similar results.The fabrics are relatively concordant and generally vary from NE-SW to NEE-SWW which are roughly oblique to the trend of the pluton elongation and the regional structures.Meanwhile,scalar parameters reflect two completely different strain regimes for the pluton and its host rocks,i.e.,the fabrics within host rocks are mainly oblate while the central part of the intrusion displays mainly prolate fabrics.It is inferred that the structural pattern recorded in this pluton was caused by local dextral transtension in consequence of oblique convergence between the South and North China Blocks.We propose that the local transtension in convergence setting probably evolved from vertical extrusion tectonics that provided room for the magma emplacement and imparted prolate fabrics in the Huamenlou pluton.  相似文献   

18.
近同心状房山岩体接触变质晕中变斑晶-基质关系与变质作用P-T轨迹样式的结合可以区分岩浆底劈式侵位与气球膨胀式侵位机制.例如,该房山岩体南侧接触变质晕中的下马岭组泥质变质岩的变斑晶-基质关系显示强烈的面状压扁应变变形,其变质作用P-T轨迹具等压加热趋势,综合前人成果估算该岩体4个依次侵位的岩石单元的最终就位岩浆结晶深度彼此近于一致,倾向于认为该岩体的岩浆侵位机制为气球膨胀式.   相似文献   

19.
A magnetic fabric study has been made in the eastern branch of the Montmarault granite. Magnetic foliation (in accordance with the visible foliation of the country rocks) and magnetic lineation dip typically towards the SE in the eastern part of the massif (monzonitic granite) and towards the WNW in the western part (granodiorite), thus indicating an antiformal structure with a SW-dipping axis. This SW direction coincides with the magnetic lineation at some sites. The susceptibility ellipsoid is oblate, showing a clear predominance of foliation relative to lineation. We infer that the granite was thus probably subjected to strong compression during or shortly after its emplacement, at the end of the Upper Devonian metamorphism, or, more probably, during the latest tectono-metamorphic event in this area, in Early Westphalian time. The antiformal structure most probably corresponds to a Stephanian deformation.  相似文献   

20.
In southwest New Zealand, a suite of felsic diorite intrusions known as the Western Fiordland Orthogneiss (WFO) were emplaced into the mid to deep crust and partially recrystallized to high‐P (12 kbar) granulite facies assemblages. This study focuses on the southern most pluton within the WFO suite (Malaspina Pluton) between Doubtful and Dusky sounds. New mapping shows intrusive contacts between the Malaspina Pluton and adjacent Palaeozoic metasedimentary country rocks with a thermal aureole ~200–1000 m wide adjacent to the Malaspina Pluton in the surrounding rocks. Thermobarometry on assemblages in the aureole indicates that the Malaspina Pluton intruded the adjacent amphibolite facies rocks while they were at depths of 10–14 kbar. Similar P–T conditions are recorded in high‐P granulite facies assemblages developed locally throughout the Malaspina Pluton. Palaeozoic rocks more than ~200–1000 m from the Malaspina Pluton retain medium‐P mid‐amphibolite facies assemblages, despite having been subjected to pressures of 10–14 kbar for > 5 Myr. These observations contradict previous interpretations of the WFO Malaspina Pluton as the lower plate of a metamorphic core complex, everywhere separated from the metasedimentary rocks by a regional‐scale extensional shear zone (Doubtful Sound Shear Zone). Slow reaction kinetics, lack of available H2O, lack of widespread penetrative deformation, and cooling of the Malaspina Pluton thermal anomaly within c. 3–4 Myr likely prevented recrystallization of mid amphibolite facies assemblages outside the thermal aureole. If not for the evidence within the thermal aureole, there would be little to suggest that gneissic rocks which underlie several 100 km2 of southwest New Zealand had experienced metamorphic pressures of 10–14 kbar. Similar high‐P metamorphic events may therefore be more common than presently recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号