共查询到6条相似文献,搜索用时 0 毫秒
1.
Seismic Hazard for Selected Sites in Greece: A Bayesian Estimate of Seismic Peak Ground Acceleration 总被引:1,自引:1,他引:1
A procedure for estimating maximum values of seismic peak ground accelerationat the examined site and quantiles of its probabilistic distribution in a future timeinterval of a given length is considered. The input information for the method areseismic catalog and regression relation between peak seismic acceleration at a givenpoint and magnitude and distance from the site to epicenter (seismic attenuation law).The method is based on Bayesian approach, which simply accounts for influenceof uncertainties of seismic acceleration values. The main assumptions for the method are Poissonian character of seismic events flow and distribution law of Gutenberg-Richter's type. The method is applied to seismic hazard estimation in six selected sitesin Greece. 相似文献
2.
In this paper we have described the proceduresused, input data applied and results achieved in ourefforts to develop seismic hazard maps of Honduras.The probabilistic methodology of Cornell is employed.Numerical calculations were carried out by making useof the computer code SEISRISK III. To examine theimpact of uncertainties in seismic and structuralcharacteristics, the logic tree formalism has beenused. We compiled a de-clustered earthquake cataloguefor the region comprising 1919 earthquakes occurringduring the period from 1963 to 1997. Unified momentmagnitudes were introduced. Definition of aseismotectonic model of the whole region under review,based on geologic, tectonic and seismic information,led to the definition of seven seismogenetic zones forwhich seismic characteristics were determined. Fourdifferent attenuation models were considered. Resultsare expressed in a series of maps of expected PGA for60% and 90% probabilities of nonexceedence in a50-year interval which corresponds to return periodsof 100 and 475 years, respectively. The highest PGAvalues of about 0.4g (90% probability ofnon-exceedence) are expected along the borders withGuatemala and El Salvador. 相似文献
3.
Seismic Hazard Mapping and Microzonation in the Sikkim Himalaya through GIS Integration of Site Effects and Strong Ground Motion Attributes 总被引:1,自引:1,他引:1
Sankar Kumar Nath 《Natural Hazards》2004,31(2):319-342
The seismic ground motion hazard is mapped in the Sikkim Himalaya with local and regional site conditions incorporated through geographic information system. A strong motion network in Sikkim comprising of 9 digital accelerographs recorded more than 100 events during 1998–2002, of which 41 events are selected with signal-to-noise ratio 3 for the estimation of site response (SR), peak ground acceleration (PGA) and predominant frequency (PF) at all stations. With these and inputs from IRS-1C LISS III digital data, topo-sheets, geographical boundary of the State of Sikkim, surface geological maps, soil taxonomy map in 1:50,000 scale and seismic refraction profiles, the seismological and geological thematic maps, namely, SR, PGA, PF, lithology, soil class, %slope, drainage, and landslide layers are generated. The geological themes are united to form the basic site condition coverage of the region. The seismological themes are assigned normalized weights and feature ranks following a pair-wise comparison hierarchical approach and later integrated to evolve the seismic hazard map. When geological and seismological layers are integrated together through GIS, microzonation map is prepared. The overall site response, PGA and predominant frequency show an increasing trend in the NW–SE direction peaking at Singtam in the lesser Himalaya. As Main Boundary Thrust (MBT) is approached, the attribute value increases further. A quasi-probabilistic seismic hazard index has been proposed based on site response, peak ground acceleration and predominant frequency. Six seismic hazard zones are marked with percent probability <22%, 22–37%, 37–52%, 52–67%, 67–82%, >82% at 3 Hz and <20%, 20–34%, 34–48%, 48–61%, 61–75%, >75% at 9 Hz. In the microzonation vector layer of integrated seismological and geological themes also six major zones are mapped, with percent probability <15%, 15–31%, 31–47%, 47–63%, 63–78%, >78% at low frequency end. The maximum risk is attached to the probability greater than 78% in the Singtam and its adjoining area. These maps are generally better spatial representation of seismic hazard including site-specific analysis. 相似文献
4.
5.
Sokolov Vladimir Ovcharenko Arkady Loh Chin-Hsiung Wen Kuo-Liang 《Natural Hazards》2004,33(3):319-363
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS). 相似文献
6.
北京昌平十三陵钻孔地应力测量与实时监测在断层活动危险性分析中的应用探讨 总被引:1,自引:0,他引:1
本文尝试运用北京昌平十三陵钻孔98 m深度原地应力测量和实时监测数据,依据弹性力学应力张量叠加原理,计算得到不同时段地应力结果;根据断层滑动摩擦准则,探讨南口山前断裂活动性,对了解该区地震危险性有重要的意义。原地应力测量与实时监测计算结果表明:在2010年1月初和2013年3月31日,最大水平主应力平均值分别为5.30 MPa和7.56 MPa,呈增加趋势;最大水平主应力方向也由NNW逐渐过渡到NE至近EW向。断层面上剪应力与正应力的比值结果显示:在2010年1月初和2013年3月底,平均比值分别为0.12和0.22,虽均没有达到断层面临界滑动摩擦系数0.6,但其显示出的增加趋势在一定程度上反映了该地区构造活动有增强的迹象,该现象值得关注。 相似文献