首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract Small, stagnating ice caps at high latitudes are particularly sensitive to climatic fluctuations, especially with regard to changes in ablation season temperature. We conducted mass balance measurements and GPS area surveys on four small High Arctic plateau ice caps from 1999–2002. We compared these measurements with topographic maps and aerial photography from 1959, and with previously published data. Net mass balance (bn) of Murray Ice Cap was ?0.49 (1999), ?0.29 (2000), ?0.47 (2001), and ?0.29 (2002), all in meters of water equivalent (m w.eq.). The mass balance of nearby Simmons Ice Cap was also negative in 2000 (bn=?0.40 m w.eq.) and in 2001 (bn=?0.52 m w.eq.). All four ice caps experienced substantial marginal recession and area reductions of between 30 and 47% since 1959. Overall, these icecaps lost considerable mass since at least 1959, except for a period between the mid‐1960s and mid‐1970s characterized regionally by reduced summer melt, positive mass balance, and ice cap advance. The regional equilibrium line altitude (ELA) is located, on average, above the summits of the ice caps, indicating that they are remnants of past climatic conditions and out of equilibrium with present climate. The ice caps reached a Holocene maximum and were several times larger during the Little Ice Age (LIA) and their current recession reflects an adjustment to post‐LIA climatic conditions. At current downwasting rates the ice masses on the Hazen Plateau will completely disappear by, or soon after, the mid‐21st century.  相似文献   

2.
Annual balance measurements on the Lemon Creek Glacier, Alaska conducted by the Juneau Icefield Research Program (JIRP) from 1953 through 1998 provide a continuous 46 year record. This is one of the nine American glaciers selected in a global monitoring network during the International Geophysical year, 1957/58. These data have been acquired primarily by employing consistent ground methods, conducted on similar annual dates and calculated using comparable methodology. The results have been until now fairly precise, but of uncertain accuracy. An adjunct comparison of topographic surface maps of the glacier made in 1957 and 32 years later in 1989 provides a rough determination of glacier surface elevation changes which are clearly of less precision than the compilation of annual ground data. Airborne surface profiling in 1995, and global positioning system leveling transects in 1996–1998 update the record of surface elevation changes over the past decade. The mean glacier ice thickness reductions suggested by these methods from 1957–1989, from 1957–1995 and from 1957–1998 are ?13.2 m, ?16.4 m, and ?21.7 m, respectively. It is of interest that the geodetic interpretations agree fairly well with the trend of sequential balances from ground-level stratigraphic measurements. To date, however, the infrequent mapping methods in this study have yielded specific balances averaging between 5 and 11% less than those resulting from our annual on-site glaciological monitoring. For future studies this can be an important factor. The ground data are, therefore, the ones in which we have most confidence. These show cumulative ice losses of ?13.9 m (12.7 m water equivalent w.e.) from 1957–1989, of ?19.0 m (?17.1 m w.e.) from 1957–1995, of ?24.4 m (22 m w.e.) from 1957–1998, and ?24.7 m (22.2 m w.e.) for the total cumulative loss over the full 46 years between 1953 and 1998. Although the balance trend has been increasingly negative it averages ?0.48 m/a in w.e. or 0.52 m of ice loss per year. To refine the reliability of density determinations in this data set the effects of internal accumulation from refrozen meltwater producing diagenetic ice structures in the annual firnpack have been taken into account. An unusual dearth of such structures within the 1997/98 firnpack provided a unique opportunity to facilitate application of the probing technique over broad areas of the nv. This added to our ground truth and verified accuracy of the test-pit measurements used in these long-term mass balance computations. The glacier's continuing negative mass balance has fueled a terminal retreat of 800 m during the 1953–1998 period. The annual balance trend indicates that despite a higher mean elevation and a higher elevation terminus from thinning and retreat, mean annual balance has been strongly negative since 1977 (?0.78 m/a w.e.). Dramatically increased negative mass balances have occurred in the 1990s, with 1996 and 1997 being the only years on record with no retained accumulation since field observations were initiated in the glacier source areas in 1948.  相似文献   

3.
Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979–80, and 1985–97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970–97, the direct method shows a cumulative balance of about −15 m, and the geodetic method shows a cumulative balance of about −22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.  相似文献   

4.
Mass Balance Methods on Kongsvegen, Svalbard   总被引:3,自引:0,他引:3  
On the glacier Kongsvegen (102 km2) in northwest Spitsbergen, Svalbard, traditional mass balance measurements by stake readings and snow surveying have been conducted annually since 1987. In addition, repeated global positioning system (GPS) profiling, shallow core analysis and ground-penetrating radar (GPR) surveying have been applied. The purpose of this paper is to evaluate the input from the different methods, especially the GPS profiling, using the results from the traditional direct method as a reference. The annual flow rate on Kongsvegen is low (2 ? 3 m a?1), and the emergence velocity is almost negligible. Thus the geometry changes of the glacier, i.e. the change in altitude per distance from the head of the glacier, should reflect the change in net balance of the glacier. The mean annual altitude change from the longitudinal, centreline GPS profiles was compared to the direct stake readings and showed a very good agreement. On Kongsvegen the measured actual ice flux is so low that the mass transfer down-glacier at the mean equlibrium line altitude is less than 10% of what is needed to maintain steady-state geometry. This is clearly shown in the changing altitude profiles. GPS profiling can be used on large glaciers in remote areas to monitor geometry changes, ice flow and net mass balance changes. However, it requires that the centreline profile changes are representative for the area/altitude intervals, i.e. that the accumulation and ablation pattern is evenly distributed. For this purpose the GPR surveying quickly gave the snow distribution variability over long distances. Shallow cores drilled in different altitudes in the accumulation area were analysed to detect radioactive reference layers from the fallout after the Chernobyl accident in 1986, and showed very good agreement to the direct measured net balance. Thus older reference horizons from bomb tests in 1962 could be used to extend the net balance series backwards.  相似文献   

5.
《Polar Science》2014,8(2):86-95
Rapid environmental change has been observed in the De Long Islands, Siberian Arctic, where warming has extensively occurred over the area. To quantitatively evaluate glaciological changes since the 1980s, the climate, mass balance, and the equilibrium line altitude (ELA) of Toll Glacier on Bennett Island were analyzed. Air temperature has increased and solid precipitation has decreased since the 1960s, especially after 2000. The cumulative mass balance of Toll Glacier has had a negative trend since the 1960s and reached approximately −20 m water equivalent (w.e.) in 2000, which is one of the largest changes in the Arctic. These changes are much larger than those in the west Russian Arctic. The warming trend is also correlated with the sea ice distribution in the Siberian Arctic and may lead to feedback effects that cause further Arctic warming.  相似文献   

6.
Mean net annual balance and the related spatio-temporal variations have been determined on the basis of well-dated artificial layers in shallow ice cores (Chernobyl, 1986, and atmospheric thermonuclear tests, mainly in 1961-62 in Novaya Zemlya). Seventy ice cores from 13 Svalbard glaciers have been analysed. On each glacier, in its accumulation area and at the highest elevation, one ice core was recovered down to about 40 m and sampled for radioactivity measurements to determine the 1986 and 1962-63 layer (1954 was the initial date of the nuclear tests). For each glacier, at least five complementary ice cores from the accumulation area were analysed to determine the Chernobyl reference layer. Six ice cores exhibit both the Chernobyl and nuclear tests layers and are of special interest in this study.
This work provides new data on the deposition rates of natural and artificial radioisotopes. Using ice cores samples from the Arctic glaciers, even with superimposed ice accumulation, it is possible to distinguish between the Chernobyl and the nuclear tests fallouts. This work also shows that the mean annual net balance did not significantly change for at least five ice core locations in the Svalbard glaciers for the two periods extending from 1963 to 1986 to the recent date of drilling.  相似文献   

7.
The identification of surge activity is important in assessing the duration of the active and quiescent phases of the surge cycle of Svalbard glaciers. Satellite and aerial photographic images are used to identify and describe the form and flow of Perseibreen, a valley glacier of 59 km2 on the east coast of Spitsbergen. Heavy surface crevassing and a steep ice front, indicative of surge activity, were first observed on Perseibreen in April 2002. Examination of high resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery confirmed this surge activity. Perseibreen retreated by almost 750 m between 1961 and 1990. Between 1990 and the summer of 2000, Perseibreen switched from retreat and its front began to advance. Rapid advance was underway during the period June 2000 to May 2001, with terminus advance at over 400 m yr−1. Between May and August 2001 the rate increased to over 750 m yr−1. The observed crevasse orientation indicates that ice was in longitudinal tension, suggesting the down-glacier transfer of mass. Ice surface velocities, derived from image correlation between ASTER images, were 2-2.5 m d−1 between May and August 2001. The glacier was flowing at a relatively uniform speed with sharp velocity gradients located close to its lateral margins, a velocity structure typical of ice masses in the active phase of the surge cycle. The stress regime is extensional throughout and the surge appears to be initiated low on the glacier. This is similar to the active-phase dynamics of other Svalbard tidewater glaciers. Perseibreen has probably been inactive since at least 1870, a period of about 130 years to the present surge which defines a minimum length for the quiescent phase.  相似文献   

8.
《极地研究》1992,3(2):56-68
The extension of ice sheet on King George Island during the last glaciation was an environment event since the last glaciation. At that time South Shedlands Islands were a large unified island and the ice mass on King George Island might come from the Antarctic Peninsula. The model of ice retreat and ice advance events in the Holocene show that the ice sheet was separated into three small ice caps and then dispeared gradually. At present the retreating velocity of glacier is about 1.3m each year. After the retreat of ice sheet the isostatic compensation appeared in the crust there, and then 5-6 steps of the uplifted marine terraces have been developed along the coast. The uplift rate of the crust may be 6-10mm/a.  相似文献   

9.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   

10.
ABSTRACT. We have studied a 33.7 m deep ice core from a small polythermal Scandinavian ice cap to determine whether it is possible to recover pre-20th century climatic information from the glacier. Ice structural studies show a significant change from clear ice above 11 m depth (superimposed ice indicating refreezing) to bubbly ice below 11 m depth, indicating this is the transition between Little Ice Age (LIA) and 20th century ice. Calculations with a Nye-age model, along with a mass balance reconstruction, show that this structural boundary likely formed in the last part of the LIA, which in this region ended about 1910. The ice below this boundary was sampled and analysed for stable isotopic composition and ionic content, which both show significant variations with depth. The stable isotope record likely contains cycles of annual duration during the LIA. The chemistry in the ice core indicates that the information is useful, and can be used to interpret climatic and environmental variables during the LIA. A comparison of Riukojietna ion chemistry and oxygen isotope records with similar records from other glaciers in this region reveals a clear continental-maritime gradient. Changes in this gradient with time may be possible to resolve using such ice core records. Results from this study demonstrate that ice cores from glaciers in this climatic environment can be useful in revealing environmental conditions from climatically colder periods and yield pre-industrial benchmark values for chemical loading and oxygen isotopes, but that hiatuses complicate the depth-age relationship.  相似文献   

11.
南极冰盖物质平衡与海平面变化研究新进展   总被引:2,自引:0,他引:2       下载免费PDF全文
本文在简要介绍冰盖物质平衡及其对海平面影响的基础上,从整体法和分量法两个方面总结了南极冰盖物质平衡研究的最新进展,并分析了影响其物质平衡的不确定因素。研究表明,整个南极冰盖物质平衡呈现负增长的趋势,其中西南极Amundsen海湾附近的冰盖物质流失最为明显。另外,南极冰盖边缘的大部分地区还呈现变薄的趋势。南极冰盖物质流失是引起海平面上升的最大潜在因素之一,其冰架的缓冲作用、冰盖的不稳定性和冰盖底部融水的作用等不确定因素对南极冰盖物质平衡具有重要的影响。未来随着观测技术和数据处理技术的不断提高,南极冰盖物质平衡的估算及其不确定因素有望得到进一步的认识,从而为预测海平面的上升范围提供更多的理论和技术支撑。  相似文献   

12.
北极斯瓦尔巴群岛冰川大多数属于亚极地型(sub-polar)或多热型(polythermal)。Austre Br(?)ggerbreen和Midre Lovénbreen冰川(<10km~2)长时间系列物质平衡研究显示,自小冰期结束以来几乎所有的观测年中夏季消融比冬季积累更大,导致冰体稳定地减小;而面积更大、海拔高度更高的冰川如Kongsvegen冰川(105km~2)则更加接近稳定态的平衡。斯瓦尔巴群岛冰川流动速率一般较低,但跃动相当频繁,控制跃动型冰川空间分布的因素包括冰川长度、基底岩性和多热场。可通过冰川水文特征、钻孔温度测量和无线电回波探测获取斯瓦尔巴群岛冰川热场的信息。斯瓦尔巴群岛冰川的低流速和多热性结构对冰川上的排水系统相当重要,整个群岛淡水径流的四个主要来源分别是冰川消融、雪融化、夏季降雨和冰崩解,经验回归方法和模式方法用于计算淡水径流量。因夏季融水渗浸作用、采样分辨率低和化学成分分析有限,早期斯瓦尔巴群岛冰芯的准确定年受到严重影响,但最近的研究显示,来自斯瓦尔巴群岛冰帽的冰芯数据仍然能够提供重要的气候和环境信息。通过我国北极黄河站2005年度科学考察,我们已初步建立了Austre Lovénbreen冰川和Pedersenbreen冰川监测系统,并计划在Austre Lovénbreen冰川进行钻孔温度测量、冰川气象要素观测、冰川前缘水文观测以及冰川厚度和内部结构测量,重点开展斯瓦尔巴群岛冰川基本特征和发育条件、冰川表面能量和物质平衡、冰川波动与气候变化关系、淡水径流年际和季节性变化和气/雪/冰界面过程等方面的研究。  相似文献   

13.
The mass balance distribution over a 0.5 km2 area of the lower part of South Cascade Glacier is obtained from remotely sensed measurements of its geometry and velocity field over two periods, 1992–93 and 1993–94. Vertical aerial photography from late summer 1992, 1993, and 1994 is analyzed photogrammetrically to get surface topography of South Cascade Glacier on a 100-meter square grid. The known bed topography is subtracted from the surface topography to get the ice thickness, and the surface topographies are subtracted from each other to get the thickness change. Annual displacement vectors, determined at points where natural features could be tracked from one year to the next, are contoured by hand and interpolated to the grid. Assuming that the ice follows Glen's flow law with exponent n = 3, and that 10% of the ice flow is due to sliding at the bed, the surface velocity is scaled by 0.82 to get the average velocity in the vertical ice column. The average velocities are combined with the thicknesses to calculate the flux divergence at each of 46 gridpoints on a 100-m square grid, where it is subtracted from the thickness change to get the mass balance.
Use of the same control points from year to year makes any systematic error in photogrammetric coordinates temporally constant, so such error has no effect on the mass balance estimate. Random error in coordinates is assumed to be uncorrelated from coordinate to coordinate, from point to point, from year to year; the standard error is estimated to be 1 m, resulting in a standard error in coordinate differences of about 1.5 m. A 1 m error in a vertical coordinate has nearly twice the effect on the estimated balance that one in a horizontal coordinate has and more than ten times the effect that one in ice thickness has. Compared with measurements at a stake, the estimated balances are about 1 m too negative.  相似文献   

14.
Tidal motion is the source of short-term vertical motion that an ice shelf experiences, and hence has a significant impact on ice shelves. During the 2003/2004 Austral summer season, five days of GPS measurements were carried out on the front of the Amery Ice Shelf (AIS), East Antarctica, by the 20th Chinese National Antarctica Research Expedition (CHINARE). The GPS data was processed using GAMIT/GLOBK software with 2-hour static data segment and the vertical precision is less than 0.18 m. To verify our results for the vertical component, we compare the ice shelf GPS tidal signal with a tidal result derived from tide gauge measurements at China's Zhongshan Station on Antarctica. Comparison of the GPS results with the tide gauge were in good agreement in amplitude at the few cm level, which indicates that the tide under the front of Amery Ice Shelf is irregular semidiurnal tide, the maximal tidal differences is approximately 2 m. GPS data can be used to validate the ocean tide model around the Antarctic area and such studies are important to improve our knowledge of the Antarctic ice shelf mass balance and dynamical models of ice sheet/ocean interaction.  相似文献   

15.
Twentieth-century changes in Norwegian glaciers have been pronounced, but the different geometries and dynamics of the glaciers have caused different responses to similar climatic changes. Close to the Arctic Circle, all the glaciers of Svartisen, the largest ice-covered area of northern Scandinavia, have retreated since the beginning of the century. However, several of the smaller glaciers which end at relatively high altitude have experienced both periods of advance and periods of retreat since the mid-1960s. The mass balance of Engabreen, the largest of the West Svartisen glaciers, was positive in 21 of the 27 years to 1995–96. The sizes of most of the glaciers of the Okstindan area, 60 km south-east of Svartisen, have also decreased throughout the twentieth century, but Corneliussens Bre, a small glacier at the eastern side of the massif, has been advancing since 1970. The areas supplying some of the southern glaciers of Okstindan have been reduced as a result of changes in ice thickness at high altitude. Studies of glacier change are aided by the use of digital terrain models (DTMs). Triangular irregular network DTMs of the surface and bed topography of the largest of the Okstindan glaciers, Austre Okstindbreen, have been used in studies of mass-balance variations and changing surface flow patterns between 1976 and 1995.  相似文献   

16.
对位于北极Svalbard群岛新奥尔松(Ny-lesund)的Austre Lovénbreen和Pedersenbreen冰川首个物质平衡年(2005/06年度)的冰川表面物质平衡及其运动特征进行研究,并阐述了Austre Lovénbreen冰川末端位置的变化状况。结果表明:(1)Austre Lovénbreen和Pedersenbreen冰川净物质平衡分别为-0.44和-0.20m w.e.,年消融量分别为0.99和0.94m w.e.,对应冰川零平衡线高度分别为478.10和494.87m。(2)两条冰川符合Svalbard地区跃动冰川运动的特征模式。运动速度矢量的水平分量表现为:向主流线辐合或平行于主流线。下游运动速度较慢,而在中上游运动相对较快。Austre Lovénbreen冰川表面各观测点的运动速度平均值为2.28m·a-1,运动速度最大值和最小值分别为3.91和0.81m·a-1;Pedersenbreen冰川表面观测点运动速度平均值为6.74m·a-1,运动速度最大值和最小值分别为8.13和5.49m·a-1。运动速度矢量的垂直分量表现为:消融区冰川消融量随海拔升高而减弱,Austr...  相似文献   

17.
Measurements of winter balance (bw) and summer balance (bs) have been carried out at Storbreen since 1949. Here we apply a simple mass balance model to study the climate sensitivity and to reconstruct the mass balance series priorto 1949. The model is calibrated and validated with data from an automatic weather station (AWS) operating in the ablation zone of Storbreen since 2001. Regression analysis revealed that bw was best modelled using precipitation data southwest of the glacier. Results from the model compared well with reported mass balance values for the period 1949–2006, obtained correlations (r) for bw and bs varied between 0.83 and 0.87 depending on model set up. Reconstruction of the mass balance series for the period 1924/1925–1948/1949 suggested a cumulative mass deficit of c. 30 m w.e. mainly due to highly negative summer balances, but also lower bwthan the average for 1949–2006. Calculated change in specific mass balance for a ±1°C change in air temperature was ±0.55 m w.e., whereas a ±10 % increase in precipitation represented a change of ±0.20 m w.e. Model results further indicated that for a 2°C warming, the ablation season will be extended by c. 30 days and that the period of ice melt at the AWS location will increase from c. 40 to c. 80 days.  相似文献   

18.
Mass changes of Blue Glacier, USA are calculated from topographic maps made from vertical aerial photography in late summer of 1939, 1952, 1957, and 1987, along with laser altimetry flown in June 1996. Changes in elevation between maps were adjusted for seasonal variations in the snow cover, and to account for the ablation between the date of photography and 1 October. Topography obtained from the laser altimetry was adjusted for snow thickness and glacier motion to estimate topography of 1 October 1995. The mass of Blue Glacier has changed less than 7 m (water equivalent) during this 56 year period which is minor compared with other glaciers in the region and elsewhere in the world. Glacier-average annual mass balances, beginning in 1956, have been calculated either from stake measurements and probing of late-season snow, or from a regression analysis using late-season measurements of the equilibrium line altitude. A comparison with the changes derived from surface maps shows values obtained from field measurements are too positive by about 0.4 m a?1 , indicating that considerable caution is needed when interpreting time series of mass balance. Two alternative time series of mass balance consistent with the long-term mass changes are created by making simple adjustments: (1) a single constant is subtracted from each value so that the series is consistent with the 1957–95 mass change; (2) one constant is subtracted from each value over 1957–87 and another is subtracted from each value over 1987-95 so that the series is consistent with both the 1957–87 and 1987–95 mass changes. The mass balance of Blue Glacier was generally positive until the mid-1970s and negative since. The fluctuations of mass balance closely resemble those of snowfall on the glacier as estimated from the joint distribution of temperature and precipitation. The climate in western Washington was cooler and wetter during the decade before the mid-1970s, but the trend since has been towards warmer and drier conditions.  相似文献   

19.
Retrieval of oxalate from snow and ice provides information on past environmental changes. In recent years, records of organic acids in middle-and low-latitude glaciers have attracted the attention of researchers globally. In this study, we analyzed oxalates in an ice core from Laohugou Glacier No. 12 on the Qilian Mountains at an elevation of 5,040 m a.s.l. in2006. Average oxalate concentration was 18.5±2.4 ng/g over the prior 46 years. Oxalate values showed a significantly increasing trend since 1985. From 1985 to 1995, oxalate concentrations had large fluctuations, peaking in about 1987 and exhibiting a slightly decreasing trend since 1995. The result shows that the abrupt increase of oxalate concentration in the ice core since the mid-1980 s reflects atmospheric environmental pollution by human and industrial activities.  相似文献   

20.
Measurements and Models of the Mass Balance of Hintereisferner   总被引:1,自引:0,他引:1  
This paper summarizes the methods applied to determine the mass balance of Hintereisferner and several other glaciers in the Tyrolean Alps since 1952. On an annual basis the direct glaciological method was applied with fixed date measurements on 10–15 accumulation pits and 30–90 ablation stakes on 9 km2.
Indirect mass balance determination from equilibrium line altitude, accumulation area ratios or representative stakes, yield fair results and some exceptions could be related to anomalous meteorological conditions.
Monthly or more frequent stake readings supplied time series of ablation at various altitudes and slope aspects that served as basis for the calibration of energy and mass balance models. Of various models developed, two are presented in this paper. Both are based on degree days, one using daily values from a valley station to predict the mean annual balance of the entire glacier, while the other calculates day-to-day changes at 50-m grid points on the glacier.
The geodetic method has been applied for longer periods and yields results consistent with those of the glaciological method. The balance velocity calculated from recent ice thickness soundings and accumulation measurements is significantly less than observed velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号